
Lin-Bairstow polynomial roots finder

algorithm for DM42

Enrico Bellincioni

Abstract

In mathematics, and especially in the applied sciences, it often hap-

pens that you have to find the roots of polynomials even high degree.

In 1920 Professor Leonard Bairstow published the algorithm in the ap-

pendix of his book: Applied Aerodynamics. The great idea conceived

by Bairstow was that of an algorithm that was able to determine two

roots at a time instead of just one (like all the other algorithms in-

vented before), in this way the calculations used could remain in real

arithmetic, also considering the hardware resources available in those

years ... none.

1

... the problem

Professor Leonard Bairstow wanting to solve example of calculation of the

stability of an aeroplane when turning during horizontal flight had to solve

the following polynomial equation1:

λ8 + 20.4λ7 + 151.3λ6 + 490λ5 + 687λ4 + 719λ3 + 150λ2 + 109λ+ 6.87 = 0

Advantages

The algorithm turns out to be very simple to implement, in fact it requires the

repeated resolution of two recursive formulas and uses only real arithmetic

for the calculations.

Disadvantages

The convergence order of the algorithm is 2 for distinct roots and drops to 1

for roots of multiplicity higher then 1. The algorithm may also not converge

for this reason I have inserted a maximum limit of iterations equal to 80.

Derivation of the algorithm

The complete derivation of the algorithm requires several mathematical pas-

sages. To facilitate the reader to full understanding I preferred to divide into

several sections:

1. Calculation of bk, r, s

2. Linearization of the system

3. Calculation of rp, sp

4. Solution of linear system

5. Final steps and Algorithm

1For the solution obtained by Professor Leonard Bairstow (1920) compared with the

DM42, see the final part of the article where some examples are presented.

2

1 Calculation of bk, r, s

Pn(x) = α0x
n +α1x

n−1 +α2x
n−2 +α3x

n−3 + · · ·+αn−2x
2 +αn−1x+αn (1)

Equation (1) represents the polynomial whose roots we want to determine

(all at them). All coefficients of the polynomial are real numbers, this fact

limits the typology of solutions to real numbers or complex conjugate pairs.

In order to simplify the subsequent calculations, for the polynomial (1), lets

suppose α0 = 1. If it is not already so, it is easy to divide all the coefficients

by α0.

Pn(x) = xn + a1x
n−1 + a2x

n−2 + a3x
n−3 + · · ·+ an−2x

2 + an−1x+ an (2)

Where

a1 =
α1

α0

a2 =
α2

α0

· · · an =
αn

α0

Wanting to extract two roots from (2) we can divide Pn(x) by quadratic

x2 + px+ q obtaining

Pn(x) = Qn−2(x)(x2 + px+ q) + rx+ s︸ ︷︷ ︸
reminder

(3)

where

Qn−2(x) = xn−2 + b1x
n−3 + b2x

n−4 + b3x
n−5 + · · ·+ bn−4x

2 + bn−3x+ bn−2 (4)

represents the reduced polynomial after extracting the quadratic factor

x2 + px + q from Pn(x) and coefficients r,s depend on p,q. If we want to

extract two roots of Pn(x) the quadratic x2 + px + q should divide Pn(x)

without reminder.

Substituting (2) and (4) in (3) and expanding

xn + a1x
n−1 + a2x

n−2 + a3x
n−3 + · · ·+ an−2x

2 + an−1x+ an =

= (xn−2 + b1x
n−3 + b2x

n−4 + b3x
n−5 + · · ·+ bn−4x

2 + bn−3x+ bn−2)∗
∗ (x2 + px+ q) + rx+ s =

= xn+pxn−1+qxn−2+b1x
n−1+pb1x

n−2+qb1x
n−3+b2x

n−2+pb2x
n−3+qb2x

n−4+· · ·
· · ·+ bn−4x

4+pbn−4x
3+qbn−4x

2+bn−3x
3+pbn−3x

2+qbn−3x+bn−2x
2+pbn−2x+· · ·

· · ·+ qbn−2 + rx+ s

3

then by comparing the polynomial coefficients we get

a1 = p+ b1

a2 = q + pb1 + b2

a3 = qb1 + pb2 + b3

......................................

...

an−3 = qbn−5 + pbn−4 + bn−3

an−2 = qbn−4 + pbn−3 + bn−2

an−1 = qbn−3 + pbn−2 + r

an = qbn−2 + s

(5)

from which 

b1 = a1 − p
b2 = a2 − pb1 − q
b3 = a3 − pb2 − qb1
......................................

...

bn−3 = an−3 − pbn−4 − qbn−5

bn−2 = an−2 − pbn−3 − qbn−4

r = an−1 − pbn−2 − qbn−3

s = an − qbn−2

(6)

4



b1 = a1 − p1− q0
b2 = a2 − pb1 − q1
b3 = a3 − pb2 − qb1
......................................

...

bn−3 = an−3 − pbn−4 − qbn−5

bn−2 = an−2 − pbn−3 − qbn−4

r = an−1 − pbn−2 − qbn−3︸ ︷︷ ︸
bn−1

s−pbn−1 = an−pbn−1 − qbn−2︸ ︷︷ ︸
bn

(7)


b−1 = 0

b0 = 1

bk = ak − pbk−1 − qbk−2 k = 1, 2, ..., n

(8)

{
r ≡ bn−1

s ≡ bn + pbn−1

(9)

Equations (8) and (9) allow to automatically determine the coefficients

bk of the reduced polynomial and the remainder coefficients r, s, the ak, p, q

being known.

5

2 Linearization of the system

Our goal is to get zero reminder in (3), therefore{
r(p, q) = 0

s(p, q) = 0
(10)

The system (10) is non-linear, therefore the algorithm will solve it nu-

merically using linear approximation of r(p, q) and s(p, q). Lets denote lin-

ear approximation of r(p, q) and s(p, q) as Lr(p, q) and Ls(p, q) respectively.

Then linearized system (10) is{
Lr(p, q) = 0

Ls(p, q) = 0
(11)

The algorithm starts with initial values (p0, q0), solves the system (11)

for linearization in (p0, q0) getting (p1, q1) as a solution. Then the pair

(p1, q1) is used as a new p, q approximation and system is solved again, this

time for (p1, q1). Repeating this process we get sequence (p0, q0), (p1, q1), ...,

(pk, qk), (pk+1, qk+1) and we can define{
Dp(k) = pk+1 − pk
Dq(k) = qk+1 − qk

(12)

thus {
pk+1 = pk +Dp(k)

qk+1 = qk +Dq(k)
(13)

Linearization Lr(p, q), Ls(p, q) in (pk, qk) can be expressed using first

order Taylor series expansion in (pk, qk) as


Lr(p, q) = r(pk, qk) +

∂r(pk, qk)

∂p
(p− pk) +

∂r(pk, qk)

∂q
(q − qk)

Ls(p, q) = s(pk, qk) +
∂s(pk, qk)

∂p
(p− pk) +

∂s(pk, qk)

∂q
(q − qk)

(14)

6

Substituting (pk+1, qk+1) for (p, q) in (14) we get


Lr(pk+1, qk+1) = r(pk, qk) +

∂r(pk, qk)

∂p
(pk+1 − pk) +

∂r(pk, qk)

∂q
(qk+1 − qk)

Ls(pk+1, qk+1) = s(pk, qk) +
∂s(pk, qk)

∂p
(pk+1 − pk) +

∂s(pk, qk)

∂q
(qk+1 − qk)

(15)

We use linearization in (pk, qk), therefore the system (11) is solved for

(pk+1, qk+1) (which follows from numerical algorithm described earlier), thus

left sides are equal to zero


0 = r(pk, qk) +

∂r(pk, qk)

∂p
(pk+1 − pk) +

∂r(pk, qk)

∂q
(qk+1 − qk)

0 = s(pk, qk) +
∂s(pk, qk)

∂p
(pk+1 − pk) +

∂s(pk, qk)

∂q
(qk+1 − qk)

(16)


∂r(pk, qk)

∂p
(pk+1 − pk) +

∂r(pk, qk)

∂q
(qk+1 − qk) = −r(pk, qk)

∂s(pk, qk)

∂p
(pk+1 − pk) +

∂s(pk, qk)

∂q
(qk+1 − qk) = −s(pk, qk)

(17)

to simplify the reading of the system (17) making the calculations even

more compact and clear it is better to write the four partial derivatives

7



rp =
∂r(pk, qk)

∂p

rq =
∂r(pk, qk)

∂q

sp =
∂s(pk, qk)

∂p

sq =
∂s(pk, qk)

∂q

(18)

using this and the equations (9) and (12) the system (17) can be
rp ·Dp(k) + rq ·Dq(k) = − bn−1

sp ·Dp(k) + sq ·Dq(k) = − bn − pkbn−1

(19)

We now begin to calculate two of the four partial derivatives, in particular

rq and sq, differentiate the system (20) with respect to the variable q

{
r = bn−1

s = bn + pkbn−1

(20)


rq =

∂r(pk, qk)

∂q
=
∂bn−1(pk, qk)

∂q

sq =
∂s(pk, qk)

∂q
=
∂bn(pk, qk)

∂q
+ pk ·

∂bn−1(pk, qk)

∂q

(21)

8

and remembering that
b−1 = 0

b0 = 1

bk = ak − pkbk−1 − qbk−2 k = 1, 2, ..., n

(22)

from which



∂b−1(pk, qk)

∂q
= 0

∂b0(pk, qk)

∂q
= 0

∂bk(pk, qk)

∂q
=
∂ak
∂q︸︷︷︸
0

−pk ·
∂bk−1(pk, qk)

∂q
− q · ∂bk−2(pk, qk)

∂q
− bk−2 k = 1, 2, ..., n

(23)

by defining a new coefficient ck

ck = − ∂bk(pk, qk)

∂q
(24)

the system (23) can be rewritten


c−1 = 0

c0 = 0

ck = bk−2 − pkck−1 − qkck−2 k = 1, 2, ..., n

(25)

9


rq =

∂r(pk, qk)

∂q
=
∂bn−1(pk, qk)

∂q
= − cn−1

sq =
∂s(pk, qk)

∂q
=
∂bn(pk, qk)

∂q
+ pk ·

∂bn−1(pk, qk)

∂q
= − cn − pkcn−1

(26)

3 Calculation of rp, sp

The purpose of this section is to calculate the remaining two partial deriva-

tives rp, sp and show how the four partial derivatives are related with each

other. For convenience, rewritten the equation (3)

Pn(x) = Qm(x)(x2 + px+ q) + rx+ s (27)

lets denote the polynomialQn−2(x) asQm(x) where (obviously)m = n−2,

suppose we know the solutions of the quadratic factor

x2 + px+ q = 0 (28)

and that these solutions are x− and x+.

Partially differentiate (27) with respect to the variables p and q we get



∂Pn(x)

∂p︸ ︷︷ ︸
0

=
∂Qm(x)

∂p
· (x2 + pkx+ qk) +Qm(x) · x+ x · ∂r(pk, qk)

∂p
+
∂s(pk, qk)

∂p

∂Pn(x)

∂q︸ ︷︷ ︸
0

=
∂Qm(x)

∂q
· (x2 + pkx+ qk) +Qm(x) · 1 + x · ∂r(pk, qk)

∂q
+
∂s(pk, qk)

∂q

(29)

both partial derivatives found on the first member of the system are both

zero because the polynomial Pn(x), in particular the coefficients ak do not

depend on p, q. The system (29) can be evaluated for any value of the

variable x, but if we calculate it for the values x− and x+ it can be simplified

considerably. Let’s start with x = x− using the (18)

10

{
x− · rp + sp = −Qm(x−) · x−
x− · rq + sq = −Qm(x−)

(30)

multiplying the second equation of (30) by x−{
x− · rp + sp = −Qm(x−) · x−
x−

2 · rq + x− · sq = −Qm(x−) · x−
(31)

from which

x− · rp + sp = x2− · rq + x− · sq (32)

similarly for x = x+ we get the system (33) from which the functional

dependence of the four partial derivatives is evident, a linear system of two

variabiles rp,sp that we can solve with the Cramer rule{
x− · rp + sp = x2− · rq + x− · sq
x+ · rp + sp = x2+ · rq + x+ · sq

(33)

∆ =

∣∣∣∣x− 1

x+ 1

∣∣∣∣ = (x− − x+) (34)

∆rp =

∣∣∣∣x2−rq + x−sq 1

x2+rq + x+sq 1

∣∣∣∣ = (x2− − x2+) · rq + (x− − x+) · sq (35)

∆sp =

∣∣∣∣x− x2−rq + x−sq
x+ x2+rq + x+sq

∣∣∣∣ = −x− · x+ · (x− − x+) · rq (36)

from which

rp =
∆rp

∆
= (x− + x+) · rq + sq (37)

sp =
∆sp

∆
= −x− · x+ · rq (38)

remembering now that x− and x+ are both solutions of (28), we can

rewrite the equation in this way

11

x2 + px+ q = (x− x−)(x− x+) = x2 − (x− + x+) · x + x− · x+

where it is evident that

p = −(x− + x+) and q = x− · x+ (39)

equations (37) and (38) using (39) become

rp = sq − pk · rq (40)

sp = − qk · rq (41)

remembering the (26) the four partial derivatives can be thus written


rq = − cn−1

sq = − cn − pk · cn−1

rp = sq − pk · rq = (−cn − pkcn−1)− pk · (−cn−1) = − cn
sp = − qk · rq = −qk · (−cn−1) = qk · cn−1

(42)

12

4 Solution of linear system

substituting the expressions just calculated in the system (19) we obtain

{
−cn ·Dp(k) − cn−1 ·Dq(k) = − bn−1

qkcn−1 ·Dp(k) − (cn + pkcn−1) ·Dq(k) = − bn − pkbn−1

(43)

{
cn ·Dp(k) + cn−1 ·Dq(k) = bn−1

− qkcn−1 ·Dp(k) + (cn + pkcn−1) ·Dq(k) = bn + pkbn−1

(44)

subtracting from the second equation of (44) the first equation multiplied

by pk {
cn ·Dp(k) + cn−1 ·Dq(k) = bn−1

− (pkcn + qkcn−1) ·Dp(k) + cn ·Dq(k) = bn
(45)

the system (45) can be solved again with Cramer

D =

∣∣∣∣ cn cn−1

−(pkcn + qkcn−1) cn

∣∣∣∣ = c2n + cn−1(pkcn + qkcn−1) (46)

∆Dp =

∣∣∣∣bn−1 cn−1

bn cn

∣∣∣∣ = bn−1cn − bncn−1 (47)

∆Dq =

∣∣∣∣ cn bn−1

−(pkcn + qkcn−1) bn

∣∣∣∣ = bncn + bn−1(pkcn + qkcn−1) (48)

13

from which

Dp =
∆Dp

D
=

bn−1cn − bncn−1

c2n + cn−1(pkcn + qkcn−1)
(49)

Dq =
∆Dq

D
=

bncn + bn−1(pkcn + qkcn−1)

c2n + cn−1(pkcn + qkcn−1)
(50)

5 Final steps and Algorithm

The core of the algorithm was described at the beginning of section 2. Two

things are still necessary and must be highlighted in order to solve the linear

system (19), in particular:

• Initial values

• Terminating conditions

Initial values

• The initial values of p0, q0, if they are not known, can both be taken

as one this choice from the tests carried out allows the convergence of

the algorithm even in the presence of coincident roots and/or of some

coefficients of the null polynomial.

• The initial value of the error which must necessarily be greater than

the desired accuracy or tolerance toll (for example error = 1).

• The value of the iteration counter L = 0 (no iteration has yet been

done)

14

Terminating conditions

Core termination conditions can be:

• The error reached is less than or equal to the desired accuracy toll

• The number of iterations L has exceeded the maximum value (set for

example in 80). If this happens it means that the algorithm is not

converging.

For each iteration we can update the error with the following formula:

error = max(|Dp| , |Dq|) (51)

Algorithm

1. assigned n, αk, toll

2. check that α0 is equal to 1 if different divide all the coefficients αk with

the value of α0

3. if n > 2 and fixed p0 = q0 = 1, error = 1 and L=0 are calculated

bk, ck, Dp, Dq, updates error, pk+1 = pk + Dp, qk+1 = qk + Dq until

error ≤ toll or L > 80, show roots of quadratic factor x2 + px + q or

exit with message error (if L > 80)

4. n = n− 2, replace ak with bk return to step 3

5. if n = 2 or n = 1 calculate the polynomial root(s)

Convergence of the algorithm

I have limited the maximum number of iterations of the algorithm L to 80

to understand if the algorithm is able to converge.

15

MATLAB® Bairstow Code

Before going into the technical details of drafting the algorithm code for

DM42, I report the source code of the Bairstow algorithm that I made years

ago in MATLAB® by which I was inspired for the recoding for the DM42

1 function rad = bairstow(a,toll,L)

2 if nargin == 1

3 toll = 1e-6;

4 L = 80;

5 elseif nargin == 2

6 L = 80;

7 end

8 n = length(a) -1;

9 rad = [];

10

11 while n > 2

12 p = 1;

13 q = 1;

14 [p,q,b,iter,error] = bairstkernel(a,p,q,toll,L);

15 x1 = -0.5*(p+sqrt(p*p-4*q));

16 x2 = -p-x1;

17 rad = [rad x1 x2];

18 a = b(2:n);

19 n = n-2;

20 disp(iter)

21 disp(error)

22 end

23

24 if n == 2

25 x1 = -0.5*(a(2)+sqrt(a(2)*a(2)-4*a(3)));

26 x2 = -a(2)-x1;

27 rad = [rad x1 x2];

28 elseif n == 1

29 x1 = -a(2);

30 rad = [rad x1];

31 end

32

33 rad = rad';

34

35 return

16

1 function [p,q,b,iter,error] = bairstkernel(a,p,q,toll,L)

2 if a(1) 6= 1

3 a = a/a(1);

4 end

5

6 n = length(a)-1;

7

8 a = a(2:n+1);

9

10 error = 1;

11 iter = 0;

12

13 while (error > toll)&&(iter ≤ L)

14 b(1) = 0;

15 b(2) = 1;

16 for k = 1:n

17 b(k+2) = a(k)-p*b(k+1)-q*b(k);

18 end

19 c(1) = 0;

20 c(2) = 0;

21 for k = 1:n

22 c(k+2) = b(k)-p*c(k+1)-q*c(k);

23 end

24

25 D = c(n+2)*c(n+2)+c(n+1)*(p*c(n+2)+q*c(n+1));

26 Dp = (b(n+1)*c(n+2)-b(n+2)*c(n+1))/D;

27 Dq = (b(n+2)*c(n+2)+b(n+1)*(p*c(n+2)+q*c(n+1)))/D;

28

29 error = max(abs(Dp),abs(Dq));

30

31 p = p + Dp;

32 q = q + Dq;

33 iter = iter +1;

34 end

35

36 if (iter>L)

37 disp('ATTENTION algorithm don''t converge')

38 return

39 end

40 return

17

DM42 Resources Registers Used

REGISTER/S SCOPE

R00 – R22 Polynomial coefficients Pn(x) = α0x
n +α1x

n−1 + · · ·αn

R30 – R52 Polynomial reduction and remainder Qn−2(x) = xn−2+

b1x
n−3 + · · · bn

R60 – R82 Coefficients ck
R84 bn+1

R85 bn+2

R86 Dq

R87 Dp

R88 D

R89 k for loop index

R90 Maximum degree of polynomial n ≤ 22

R91 Cycle indices and/or pointers

R92 Cycle indices and/or pointers or cn+1

R93 Cycle indices and/or pointers or cn+2

R94 Cycle indices and/or pointers

R95 pk value on departure p0 = 0

R96 qk value on departure q0 = 0

R97 error = max(|Dp|, |Dq|) on departure error = 1.0

R98 Number of iterations m

R99 Desired tolerance / accuracy toll� 1e− 33

DM42 Resources Main Subroutines Used

NAME SCOPE

A Read the polynomial Pn(x) = α0x
n + α1x

n−1 + · · ·αn coefficients

B Normalizes the polynomial coefficients if a0 6= 1

D Kernel of the algorithm to determine x2 + px+ q = 0

d Main while loop of algorithm

J Copy ak ←− bk and lower the polynomial degree n←− n− 2

a Solves x2 + px+ q = 0 and displays solutions

01 & c Solves if polynomial degree n = 1 and display solution

02 & b Solves if polynomial degree n = 2 and displays solutions

04 Check convergence if m > 80−−− > ERROR

18

Print the solutions obtained to the text files

1. Shift + SETUP −→ Printing set Text Print (X)

2. Shift + PRINT −→ PON (enable) MAN (enable)

19

DM42 code

00 { 819-Byte Prgm }

01 LBL "BAI"

02 SIZE 100 @ Set 100 real registers

03 CLRG @ Clear all registers

04 ALL @ View all digits on the LCD

05 CLLCD @ Clears the LCD display

06 CLST @ Clears all registers of the X, Y, Z, T stack

07 "Polynomial Root"

08 AVIEW

09 PSE

10 PSE

11 PSE

12 PSE

13 "Finder n22"

14 AVIEW

15 PSE

16 PSE

17 PSE

18 PSE

19 "a0X↑n+...+an"
20 AVIEW

21 PSE

22 PSE

23 PSE

24 PSE

25 " n = ?"

26 PROMPT @ Reads the degree of polynomial n

27 STO 90

28 STO 91

29 CLA

30 " n = "

31 AIP

32 AVIEW

33 PSE

34 CLST

20

35 CLA

36 RCL 91

37 1000

38 ÷
39 STO 92

40 LBL A @ Reads all the polynomial coefficients

41 " X↑" @ starting from the highest degree

42 RCL 91

43 AIP

44 AVIEW

45 PROMPT

46 STO IND 93

47 CLST

48 " = " @ATTENTION look at the photo after the code !!!

49 ARCL IND 93

50 AVIEW

51 PSE

52 PSE

53 1

54 STO+ 93

55 STO- 91

56 RCL 92

57 ISG 92

58 GTO A

59 CLST

60 1

61 RCL 00 @ Check if the polynomial is monic in the case

62 XY? @ATTENTION look at the photo after the code !!!

63 XEQ B @ does not normalize it

64 " toll = ?"

65 PROMPT @ Reads the tolerance required toll >> 1E-33

66 STO 99

67 CLA

68 " toll = "

69 ARCL 99

70 AVIEW

71 PSE

21

72 PSE

73 CLA

74 CLST

75 "... running"

76 AVIEW

77 LBL d @ Main while loop of the Bairstow algorithm

78 3

79 STO 94

80 RCL 94

81 RCL 90

82 X<Y?

83 GTO 02 @ Check if n < 3 (n = 2 or n = 1) jump to GTO 02

84 1 @ otherwise it initializes p = q = 1 and calls

85 STO 95 @ subroutine D find X↑2+pX+q = 0

86 STO 96 @ subroutine J copy An<-- Bn and lower polynomial degree n <--- n-2

87 XEQ D @ subroutine a solves X↑2+pX+q = 0 and displays solutions

88 XEQ J

89 XEQ a

90 STOP

91 GTO d

92 LBL 02 @ Check if n = 2 calculates the solutions of the 2 degree trinomial

93 2 @ using the subroutine b

94 STO 94 @ if n = 1 jump to 01

95 RCL 94

96 RCL 90

97 XY? @ATTENTION look at the photo after the code !!!

98 GTO 01

99 XEQ b

100 GTO 90

101 LBL 01 @ If n = 1 determines the real solution and displays the solution

102 XEQ c @ using the subroutine c

103 LBL 90 @ All the solutions have been found STOP

104 CLA

105 " ... stop "

106 AVIEW

107 RTN

108 LBL B @ Subroutine D to make the polynomial Pn(x) monic

22

109 1 @ Pointer register 93 to access the An

110 STO 93

111 RCL 90 @ Recalls the degree of polynomial n

112 1000 @ Initialize FOR loop using register 92 as index

113 ÷
114 STO 92

115 LBL C @ Main FOR loop

116 RCL 00

117 STO÷ IND 93 @ Divide all the An / A0 coefficients using the pointer

118 1 @ increase pointer 93 (indirect access)

119 STO+ 93

120 RCL 92

121 ISG 92 @ Repeat on all the coefficients An except the first

122 GTO C

123 1 @ Initialize A0 <--- 1

124 STO 00

125 RTN

126 LBL D @ Subroutine D kernel of Bairstow algorithm X↑2+pX+q = 0

127 1 @ Initialize ERROR <--- 1.0

128 STO 97

129 0 @ Initialize number of iterations m = 0

130 STO 98

131 LBL I @ Subroutine I calculate the Bk coefficients using

132 1 @ the pointer register 91 to access the Ak

133 STO 91

134 RCL 90

135 1000

136 ÷
137 1

138 +

139 STO 89 @ Register 89 as an index of the FOR loop

140 30 @ registers location where b(k) are saved

141 STO 92 @ Pointer used to save / access b (k)

142 STO 93

143 STO 94

144 1

145 STO+ 93 @ Pointer used to save / access b (k + 1)

23

146 STO+ 94

147 STO+ 94 @ Pointer used to save / access b (k + 2)

148 0 @ Inizialize b(1) <--- 0

149 STO IND 92

150 1 @ Inizialize b(2) <--- 1

151 STO IND 93

152 LBL E @ FOR loop to calculate all b (k)

153 RCL IND 91

154 STO IND 94

155 RCL IND 93

156 RCL 95

157 ×
158 +/-

159 STO+ IND 94

160 RCL IND 92

161 RCL 96

162 ×
163 +/-

164 STO+ IND 94

165 1

166 STO+ 91

167 STO+ 92

168 STO+ 93

169 STO+ 94

170 RCL 89

171 ISG 89

172 GTO E

173 RCL IND 92 @ Calls b (n + 1) and saves it in register 84

174 STO 84 @ for subsequent calculations D, Dp and Dq

175 RCL IND 93 @ Calls b (n + 2) and saves it in register 85

176 STO 85 @ for subsequent calculations D, Dp and Dq

177 30 @ Initialize pointer 91 where b (k) are located

178 STO 91

179 RCL 90 @ Initializes the index of the FOR loop

180 1000 @ and saves it in register 89

181 ÷
182 1

24

183 +

184 STO 89

185 60 @ registers location where c(k) are saved

186 STO 92 @ Pointer used to save / access c(k)

187 STO 93

188 STO 94

189 1

190 STO+ 93 @ Pointer used to save / access c(k+1)

191 STO+ 94

192 STO+ 94 @ Pointer used to save / access c(k+2)

193 0 @ Inizialize c(1) <--- 0

194 STO IND 92

195 0 @ Inizialize c(2) <--- 0

196 STO IND 93

197 LBL F @ FOR loop to calculate all c (k)

198 RCL IND 91

199 STO IND 94

200 RCL IND 93

201 RCL 95

202 ×
203 +/-

204 STO+ IND 94

205 RCL IND 92

206 RCL 96

207 ×
208 +/-

209 STO+ IND 94

210 1

211 STO+ 91

212 STO+ 92

213 STO+ 93

214 STO+ 94

215 RCL 89

216 ISG 89

217 GTO F

218 RCL IND 92 @ Call c (n + 1) and save it in register 92

219 STO 92 @ for subsequent calculations D, Dp and Dq

25

220 RCL IND 93 @ Call c (n + 2) and save it in register 93

221 STO 93 @ for subsequent calculations D, Dp and Dq

222 CLST @ Clears all registers of the X, Y, Z, T stack

223 RCL 95 @ Calculate D

224 RCL 93

225 ×
226 RCL 96

227 RCL 92

228 ×
229 +

230 RCL 92

231 ×
232 RCL 93

233 RCL 93

234 ×
235 +

236 STO 88

237 RCL 84 @ Calculate Dp

238 RCL 93

239 ×
240 RCL 85

241 RCL 92

242 ×
243 -

244 RCL 88

245 ÷
246 STO 87

247 RCL 95 @ Calculate Dq

248 RCL 93

249 ×
250 RCL 96

251 RCL 92

252 ×
253 +

254 RCL 84

255 ×
256 RCL 85

26

257 RCL 93

258 ×
259 +

260 RCL 88

261 ÷
262 STO 86

263 RCL 87 @ Calculate and save in the register 97 <--- max(|Dp|,!Dq|)

264 ABS

265 STO ST X

266 RCL 86

267 ABS

268 STO ST Y

269 X>Y?

270 GTO G

271 RCL 87

272 ABS

273 STO 97

274 GTO H

275 LBL G

276 RCL 86

277 ABS

278 STO 97

279 LBL H

280 RCL 87 @ Update p <--- p + Dp

281 STO+ 95

282 RCL 86 @ Update q <--- q + Dq

283 STO+ 96

284 1 @ Update the number of iterates m <--- m + 1

285 STO+ 98

286 80 @ Test if m > 80 ?

287 STO ST X

288 RCL 98

289 X>Y?

290 GTO 04

291 RCL 99 @ Test if max(|Dp|,!Dq|) < toll if you go out

292 RCL 97 @ otherwise continue to cycle

293 X>Y?

27

294 GTO I

295 RTN

296 LBL J @ Polynomial degree n <--- n-2 & subroutine J copy Ak<-- Bk

297 0

298 STO 91

299 31

300 STO 92

301 RCL 90

302 1

303 -

304 STO 93

305 1000

306 ÷
307 STO 94

308 LBL 88

309 RCL IND 92

310 STO IND 91

311 1

312 STO+ 91

313 STO+ 92

314 RCL 94

315 ISG 94

316 GTO 88

317 RCL 90

318 2

319 -

320 STO 90

321 RTN

322 LBL a @ subroutine a calculates and displays the

323 CLA @ solutions of X↑2+pX+q = 0

324 CLST

325 "... m = "

326 ARCL 98

327 " n = "

328 ARCL 90

329 AVIEW

330 RCL 95

28

331 +/-

332 2

333 ÷
334 STO 91

335 X↑2
336 RCL 96

337 -

338 STO 92

339 CLST

340 RCL 91

341 RCL 92

342 SQRT

343 +

344 RCL 91

345 RCL 92

346 SQRT

347 -

348 PRSTK

349 RTN

350 LBL b @ If n = 2 calculates and displays the solutions

351 CLA

352 CLST

353 "... continue"

354 AVIEW

355 RCL 01

356 +/-

357 2

358 ÷
359 STO 91

360 X↑2
361 RCL 02

362 -

363 STO 92

364 CLST

365 RCL 91

366 RCL 92

367 SQRT

29

368 +

369 RCL 91

370 RCL 92

371 SQRT

372 -

373 PRSTK

374 RTN

375 LBL c @ If n = 1 calculate and visualize the real solution

376 CLA

377 CLST

378 "... continue"

379 AVIEW

380 RCL 01

381 +/-

382 STO 91

383 CLST

384 RCL 91

385 PRSTK

386 RTN

387 LBL 04 @ Test if m > 80 ?

388 CLA

389 "ERROR m > 80 ! "

390 AVIEW

391 CLST

392 STOP

393 RTN

ATTENTION ATTENTION ATTENTION

30

Examples and Comparisons

Example1

P5(x) = 2(x− 1)(x− 2)(x− 3)(x− 4)(x− 5) =

= 2x5 − 30x4 + 170x3 − 450x2 + 548x− 240 = 0

DM42

31

Polynomial Root

Finder n<22

a0X^n+...+an

n = 5

X^5

Polynomial Root

Finder n22

a0X^n+...+an

n = 5

X^5

X^5 = 2

X^4

X^4 = -30

X^3

X^3 = 170

X^2

X^2 = -450

X^1

X^1 = 548

X^0

X^0 = -240

toll = 1.-21

... running

32

... m = 11 n = 3

T= 0

Z= 0

Y= 2

X= 1

... m = 10 n = 1

T= 0

Z= 0

Y= 4

X= 3

... continue

T= 0

Z= 0

Y= 0

X= 5

... stop

33

Example22

P5(x) = x5 − 17.8x4 + 99.41x3 − 261.218x2 + 352.611x− 134.106 = 0

DM42

XEQ "BAI"

n = ?

5 RUN

n = 5

X^5

X^5

1 RUN

2Example from TI-58/59 Module 11 (1978) Texas Instruments Incorporated.

34

X^5 = 1

X^4

X^4

-17.8 RUN

X^4 = -17.8

X^3

X^3

99.41 RUN

X^3 = 99.41

X^2

X^2

-261.218 RUN

X^2 = -261.218

X^1

X^1

352.611 RUN

X^1 = 352.611

X^0

X^0

-134.106 RUN

X^0 = -134.106

toll = ?

1-12 RUN

toll = 1.-12

... running

... m = 8 n = 3

T= 0

Z= 0

Y= 3.61986841536

X= 5.80131584643-1

RUN

... m = 6 n = 1

T= 0

Z= 0

Y= 1.65 i1.8648056199

35

X= 1.65 -i1.8648056199

RUN

... continue

T= 0

Z= 0

Y= 0

X= 10.3

... stop

Comparison of solutions with MATLAB®

>> p = [1 -17.8 99.41 -261.218 352.611 -134.106];

>> roots(p)

ans =

10.299999999999999 + 0.000000000000000i

3.619868415357074 + 0.000000000000000i

1.649999999999998 + 1.864805619897151i

1.649999999999998 - 1.864805619897151i

0.580131584642934 + 0.000000000000000i

>> vpa(roots(p),50) % 50 digits of precision !!!

ans =

10.3

3.6198684153570743760042205394711345434188842773438

1.65 + 1.8648056198971516398554778633752676781690560441755i

1.65 - 1.8648056198971516398554778633752676781690560441755i

0.58013158464293379523724070168100297451019287109375

36

Example3

In numerical analysis, Wilkinson’s polynomial is a specific polynomial which

was used by James H. Wilkinson in 1963 to illustrate a difficulty when finding

the root of a polynomial: the location of the roots can be very sensitive to

perturbations in the coefficients of the polynomial.

The polynomial is

P20(x) =
20∏
i=1

(x− i) = a0x
20 + a1x

19 + a2x
18 + · · ·+ a20

and toll = 1 · 10−12

Coefficient Value

a0 1

a1 -210

a2 20615

a3 -1256850

a4 53327946

a5 -1672280820

a6 40171771630

a7 -756111184500

a8 11310276995381

a9 -135585182899530

a10 1307535010540395

a11 -10142299865511450

a12 63030812099294896

a13 -311333643161390656

a14 1206647803780373248

a15 -3599979517947607040

a16 8037811822645052416

a17 -12870931245150988288

a18 13803759753640704000

a19 -8752948036761600000

a20 2432902008176640000

37

DM42

XEQ "BAI"

n = ?

20 RUN

n = 20

X^20

X^20

1 RUN

X^20 = 1

X^19

X^19

-210 RUN

X^19 = -210

X^18

X^18

38

20,615 RUN

X^18 = 20,615

X^17

X^17

-1,256,850 RUN

X^17 = -1,256,850

X^16

X^16

53,327,946 RUN

X^16 = 53,327,946

X^15

X^15

-1,672,280,820 RUN

X^15 = -1,672,280,820

X^14

X^14

40,171,771,630 RUN

X^14 = 40,171,771,630

X^13

X^13

-756,111,184,500 RUN

X^13 = -756,111,184,500

X^12

X^12

11,310,276,995,381 RUN

X^12 = 1.1310276995413

X^11

X^11

-135,585,182,899,530 RUN

X^11 = -1.35585182914

X^10

X^10

1,307,535,010,540,395 RU

N

X^10 = 1.3075350105415

X^9

X^9

39

-10,142,299,865,511,450

RUN

X^9 = -1.0142299865516

X^8

X^8

63,030,812,099,294,896 R

UN

X^8 = 6.3030812099316

X^7

X^7

-311,333,643,161,390,656

RUN

X^7 = -3.1133364316117

X^6

X^6

1,206,647,803,780,373,24

8 RUN

X^6 = 1.2066478037818

X^5

X^5

-3,599,979,517,947,607,0

40 RUN

X^5 = -3.5999795179518

X^4

X^4

8,037,811,822,645,052,41

6 RUN

X^4 = 8.0378118226518

X^3

X^3

-12,870,931,245,150,988,

288 RUN

X^3 = -1.2870931245219

X^2

X^2

13,803,759,753,640,704,0

00 RUN

40

X^2 = 1.3803759753619

X^1

X^1

-8,752,948,036,761,600,0

00 RUN

X^1 = -8.7529480367618

X^0

X^0

2,432,902,008,176,640,00

0 RUN

X^0 = 2.4329020081818

toll = ?

1-12 RUN

toll = 1.-12

... running

... m = 15 n = 18

T= 0

Z= 0

Y= 2

X= 1

RUN

... m = 20 n = 16

T= 0

Z= 0

Y= 4.00000000287

X= 2.99999999998

RUN

... m = 24 n = 14

T= 0

Z= 0

Y= 6.00000071885

X= 4.99999993513

RUN

... m = 25 n = 12

41

T= 0

Z= 0

Y= 8.00002269491

X= 6.99999510388

RUN

... m = 26 n = 10

T= 0

Z= 0

Y= 10.0001891858

X= 8.99992418614

RUN

... m = 26 n = 8

T= 0

Z= 0

Y= 12.0005305469

X= 10.9996398136

RUN

... m = 24 n = 6

T= 0

Z= 0

Y= 14.0005392168

X= 12.999392852

RUN

... m = 21 n = 4

T= 0

Z= 0

Y= 16.0001899451

X= 14.9996315405

RUN

... m = 16 n = 2

T= 0

42

Z= 0

Y= 18.0000186006

X= 16.9999284161

RUN

... continue

T= 0

Z= 0

Y= 20.0000002222

X= 18.9999970186

... stop

Comparison of solutions with MATLAB®

>> p = vpa(poly(1:20),50)’ %50 digits of precision !!!

p =

1

-210

20615

-1256850

53327946

-1672280820

40171771630

-756111184500

11310276995381

-135585182899530

1307535010540395

-10142299865511450

63030812099294896

-311333643161390656

1206647803780373248

-3599979517947607040

8037811822645052416

-12870931245150988288

13803759753640704000

43

-8752948036761600000

2432902008176640000

>> vpa(roots(p),50) %50 digits of precision !!!

ans =

20.000000222199534868713599273462258466712127004597

18.999997018587796499599382829761397076325793162443

18.000018600605906061623674706363960053777913260240

16.999928416017085118893055685779730825337982350020

16.000189945470409472562242509352720428219240209614

14.999631539779625744239784311608445427666843675867

14.000539217936149354403824840292397964289943561236

12.999392850542677085285165188054458878502693302973

12.000530548412933592244708916464305835587941782724

10.999639812328610607970362553159438217574647568529

10.000189186679827908616860814451413349963023133105

8.9999241856822158235050949809045751771845269373654

8.0000226951019706281389263917095850048514492411022

6.9999951038170559499797094372963554834034094545611

6.0000007188589671560339023143964654294808075650932

4.9999999351265723893873617834882112718161476762018

4.0000000028712551058351832250815870668565313083984

2.9999999999829963065286023953425383926195171558183

1.9999999999984005932064258391586578920548494514000

1.0000000000000097332321320038714977577746034770310

44

Comparison between DM42 and TI-59®

In this section I would like to compare the performance (speed and accuracy)

between my first programmable calculator the TI-59 (1977) purchased when

I was a young student in high school (1982) with the DM42 (2017) purchased

in May 2020. Forty years exactly after the two calculators were released. The

performances are obviously incomparable for several reasons, the main one

is certainly the miniaturization of the transistors inside modern CPUs.

TI-59® DM42

CPU TMC0501 STM32L476

Data Bus 4 bits 32 bits

fclock(max) 230 kHz 80 MHz

Precision Digits 13 34

Display Digits 10 34

Registers Maximum 100 variable

Program Steps Maximum 960

Magnetic Card Reader YES

Module ROM YES

DM42 & TI-59®

45

TI-59® Front-Side

TI-59® Back-Side

46

TI-59® Hardware

DM42 Hardware

47

Example2 with DM42 & TI-59® + Module EE113

P5(x) = x5 − 17.8x4 + 99.41x3 − 261.218x2 + 352.611x− 134.106 = 0

DM42

DM42 execution time � 1 [s]

TI59® execution time = 150 [s]

3Example from TI-58/59 Module 11 (1978) Texas Instruments Incorporated.

48

49

Example4

In numerical analysis, Wilkinson’s polynomial is a specific polynomial4 which

was used by James H. Wilkinson in 1963 to illustrate a difficulty when finding

the root of a polynomial: the location of the roots can be very sensitive to

perturbations in the coefficients of the polynomial.

The polynomial is

P10(x) =
10∏
i=1

(x− i) = a0x
10 + a1x

9 + a2x
8 + · · ·+ a10

and toll = 1 · 10−12 for DM42 while toll = 1 · 10−9 for TI59®

Coefficient Value

a0 1

a1 -55

a2 1320

a3 -18150

a4 157773

a5 -902055

a6 3416930

a7 -8409500

a8 12753576

a9 -10628640

a10 3628800

4Due to TI59’s reduced ability to represent integers, I had to limit n = 10 instead of

20.

50

DM42

DM42 execution time = 4 [s] fclock = 80 MHz

TI59® execution time = 8280 [s] !!!

51

52

Comparison between DM42, HP50G® and HP48G®

In this section I would like to compare the performance (speed and accuracy)

between DM42 with HP48G® (1993) and HP50G® (2006).

HP48G® HP50G® DM42

CPU Saturn Yorke ARM9 STM32L476

Data Bus 4 bits 32 bits

fclock(max) 4 MHz 75 MHz 80 MHz

Precision Digits 15 34

ROM 512kB 2 MB 8 MB

RAM 32 kB 512 kB 75 kB

DM42 & HP50G® & HP48G®

53

Example3

In numerical analysis, Wilkinson’s polynomial is a specific polynomial which

was used by James H. Wilkinson in 1963 to illustrate a difficulty when finding

the root of a polynomial: the location of the roots can be very sensitive to

perturbations in the coefficients of the polynomial.

The polynomial is

P20(x) =
20∏
i=1

(x− i) = a0x
20 + a1x

19 + a2x
18 + · · ·+ a20

and toll = 1 · 10−12

Coefficient Value

a0 1

a1 -210

a2 20615

a3 -1256850

a4 53327946

a5 -1672280820

a6 40171771630

a7 -756111184500

a8 11310276995381

a9 -135585182899530

a10 1307535010540395

a11 -10142299865511450

a12 63030812099294896

a13 -311333643161390656

a14 1206647803780373248

a15 -3599979517947607040

a16 8037811822645052416

a17 -12870931245150988288

a18 13803759753640704000

a19 -8752948036761600000

a20 2432902008176640000

54

DM42

DM42 execution time = 10 [s] fclock = 80 MHz

HP50G® execution time = 14 [s] fclock = 75 MHz

HP48G® execution time = not evaluable

55

HP50G® Roots of P20(x)

x1 0.999999999325

x2 2.000000080220

x3 2.99999843200

x4 3.99999054543

x5 5.00048951553

x6 5.99635310588

x7 6.98799614792

x8,9 8.17180636115 ± i 0.43452021603

x10,11 12.1018913985 ± i 2.24809179333

x12,13 14.6459622817 ± i 2.44093568498

x14,15 9.88718717922 ± i 1.48403068110

x16,17 17.1174681588 ± i 1.89829970819

x18 20.0956132820

x19,2 19.0354640665 ± i 0.811243731857

Example4

In numerical analysis, Wilkinson’s polynomial is a specific polynomial which

was used by James H. Wilkinson in 1963 to illustrate a difficulty when finding

the root of a polynomial: the location of the roots can be very sensitive to

perturbations in the coefficients of the polynomial.

The polynomial is

P10(x) =
10∏
i=1

(x− i) = a0x
10 + a1x

9 + a2x
8 + · · ·+ a10

and toll = 1 · 10−12 for DM42

56

Coefficient Value

a0 1

a1 -55

a2 1320

a3 -18150

a4 157773

a5 -902055

a6 3416930

a7 -8409500

a8 12753576

a9 -10628640

a10 3628800

DM42

57

DM42 execution time = 4 [s] fclock = 80 MHz

HP50G® execution time = 4 [s] fclock = 75 MHz

HP48G® execution time = not evaluable

HP50G® Roots of P10(x)

x1 0.999999999999

x2 2.000000000010

x3 3.000000000010

x4 3.999999999480

x5 5.000000003860

x6 5.999999986310

x7 7.000000026370

x8 7.999999971800

x9 9.000000015730

x10 9.999999996430

58

... initial problem

λ8 + 20.4λ7 + 151.3λ6 + 490λ5 + 687λ4 + 719λ3 + 150λ2 + 109λ+ 6.87 = 0

the quadratic factors obtained by Professor Leonard Bairstow in 1920

were:

1.
(
λ2 + 11.25λ+ 35.1

)
2.
(
λ2 − 0.006λ+ 0.171

)
3.
(
λ+ 7.79

)(
λ+ 0.067

)
4.
(
λ2 + 1.33λ+ 2.19

)

while the solutions obtained with the DM42 with a toll = 1 · 10−21

1.
(
λ2 + 11.2170142414λ+ 34.9705347691

)
2.
(
λ2 − 0.00566048716464λ+ 0.1707972788

)
3.
(
λ+ 7.8575856905

)(
λ+ 0.067381378159

)
4.
(
λ2 + 1.33550629852λ+ 2.19246512844

)

59

Curiosity1

Very often Leonard Bairstow’s algorithm is also called Lin-Bairstow, this is

probably due to the fact that in 1943 a Chinese mathematician Lin Shih-Nge

developed an algorithm similar to the one previously deduced by Bairstow.

Many people over the years have tried to improve the algorithm, just to name

a few in chronological order:

1. Bairstow, L., "Investigations Relating to the Stability

of the Aeroplane", R and M 154 of Advisory

Committee for Aeronautics (1914).

2. Lin, Shih-nge, "A Method for Finding Roots of Algebraic Equations",

J. Math. and Phys. 22:60-77 (1943).

3. Friedman, B., "Note on Approximating Complex Zeros of a Polynomial",

Comm. Pure Appl. Math ~:195-208 (1949).

4. Luke, Y, L., and Ufford, D., "On the Roots of Algebraic Equations",

J. Math. and Phys. 30:94-101 (1951).

5 Kantorovich, L. V., "Functional Analysis and Applied Mathematics",

N,B.S. Report 1509 (translation by C, D. Benster and edited by

G. E. Forsythe).

6. Henrici, Peter, "Elements of Numerical Analysis", Wiley and Sons,

New York (1964).

7. Forsythe, G. E., "Generation and the use of Orthogonal Polynomials

for Data Fitting with a Digital Computer" J. Sot. Indust. Appl.

Math. 5:74-88 (1957). -

8. Waltmann, W. Lo, and Lambert, R. J., "T-Algorithm for

Tridiagonalization", J. Indust, Appl, Math. 13:1069-78 (1965).

9. G. H. Golub, T. N. Robertson, "A Generalized Bairstow Algorithm",

Technical Report no. 54 January 13 (1967)

Curiosity2

If anyone was curious about the programmable calculators I purchased here

is the list: TI59®, TI95®, HP48G®, HP50G® and last DM42 all are still

fully functional.

60

Acknowledgments

I have always had the passion since I was a student of mathematics applied

to science, in these 31 years of teaching I have tried to stimulate students to

be curious, some of them have been, to mention only the latest Alessandro

Moglia whom I wish to continue their university studies with satisfaction.

Thanks also for my old student Dr. Eng. Samuele Becchia now my friend

for reading the article and his suggestions.

References

[1] William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P.

Flannery (1992), Numerical Recipes, Cambridge University Press

[2] Anthony Ralston, Philip Rabinowitz (1978) A First Curse In Numerical

Analysis, McGraw-Hill

[3] Electrical Engineering (1979) TI Programmable 58/59 Module - 11, Texas

Instruments Incorporated

[4] L. Bairstow (1920), Applied Aerodynamics, Longmans, Green and Co

61

