Lin-Bairstow polynomial roots finder algorithm for DM42

Enrico Bellincioni

Abstract

In mathematics, and especially in the applied sciences, it often happens that you have to find the roots of polynomials even high degree. In 1920 Professor Leonard Bairstow published the algorithm in the appendix of his book: Applied Aerodynamics. The great idea conceived by Bairstow was that of an algorithm that was able to determine two roots at a time instead of just one (like all the other algorithms invented before), in this way the calculations used could remain in real arithmetic, also considering the hardware resources available in those years ... none.

... the problem

Professor Leonard Bairstow wanting to solve example of calculation of the stability of an aeroplane when turning during horizontal flight had to solve the following polynomial equation ${ }^{1}$:
$\lambda^{8}+20.4 \lambda^{7}+151.3 \lambda^{6}+490 \lambda^{5}+687 \lambda^{4}+719 \lambda^{3}+150 \lambda^{2}+109 \lambda+6.87=0$

Advantages

The algorithm turns out to be very simple to implement, in fact it requires the repeated resolution of two recursive formulas and uses only real arithmetic for the calculations.

Disadvantages

The convergence order of the algorithm is 2 for distinct roots and drops to 1 for roots of multiplicity higher then 1 . The algorithm may also not converge for this reason I have inserted a maximum limit of iterations equal to 80 .

Derivation of the algorithm

The complete derivation of the algorithm requires several mathematical passages. To facilitate the reader to full understanding I preferred to divide into several sections:

1. Calculation of b_{k}, r, s
2. Linearization of the system
3. Calculation of r_{p}, s_{p}
4. Solution of linear system
5. Final steps and Algorithm
[^0]
1 Calculation of b_{k}, r, s

$$
\begin{equation*}
P_{n}(x)=\alpha_{0} x^{n}+\alpha_{1} x^{n-1}+\alpha_{2} x^{n-2}+\alpha_{3} x^{n-3}+\cdots+\alpha_{n-2} x^{2}+\alpha_{n-1} x+\alpha_{n} \tag{1}
\end{equation*}
$$

Equation (1) represents the polynomial whose roots we want to determine (all at them). All coefficients of the polynomial are real numbers, this fact limits the typology of solutions to real numbers or complex conjugate pairs. In order to simplify the subsequent calculations, for the polynomial (1), lets suppose $\alpha_{0}=1$. If it is not already so, it is easy to divide all the coefficients by α_{0}.

$$
\begin{equation*}
P_{n}(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+a_{3} x^{n-3}+\cdots+a_{n-2} x^{2}+a_{n-1} x+a_{n} \tag{2}
\end{equation*}
$$

Where

$$
a_{1}=\frac{\alpha_{1}}{\alpha_{0}} \quad a_{2}=\frac{\alpha_{2}}{\alpha_{0}} \quad \cdots \quad a_{n}=\frac{\alpha_{n}}{\alpha_{0}}
$$

Wanting to extract two roots from (2) we can divide $P_{n}(x)$ by quadratic $x^{2}+p x+q$ obtaining

$$
\begin{equation*}
P_{n}(x)=Q_{n-2}(x)\left(x^{2}+p x+q\right)+\underbrace{r x+s}_{\text {reminder }} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{n-2}(x)=x^{n-2}+b_{1} x^{n-3}+b_{2} x^{n-4}+b_{3} x^{n-5}+\cdots+b_{n-4} x^{2}+b_{n-3} x+b_{n-2} \tag{4}
\end{equation*}
$$

represents the reduced polynomial after extracting the quadratic factor $x^{2}+p x+q$ from $P_{n}(x)$ and coefficients r, s depend on p, q. If we want to extract two roots of $P_{n}(x)$ the quadratic $x^{2}+p x+q$ should divide $P_{n}(x)$ without reminder.

Substituting (2) and (4) in (3) and expanding

$$
\begin{aligned}
& \quad x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+a_{3} x^{n-3}+\cdots+a_{n-2} x^{2}+a_{n-1} x+a_{n}= \\
& \quad=\left(x^{n-2}+b_{1} x^{n-3}+b_{2} x^{n-4}+b_{3} x^{n-5}+\cdots+b_{n-4} x^{2}+b_{n-3} x+b_{n-2}\right) * \\
& \quad *\left(x^{2}+p x+q\right)+r x+s= \\
& =x^{n}+p x^{n-1}+q x^{n-2}+b_{1} x^{n-1}+p b_{1} x^{n-2}+q b_{1} x^{n-3}+b_{2} x^{n-2}+p b_{2} x^{n-3}+q b_{2} x^{n-4}+\cdots \\
& \cdots+b_{n-4} x^{4}+p b_{n-4} x^{3}+q b_{n-4} x^{2}+b_{n-3} x^{3}+p b_{n-3} x^{2}+q b_{n-3} x+b_{n-2} x^{2}+p b_{n-2} x+\cdots \\
& \cdots+q b_{n-2}+r x+s
\end{aligned}
$$

then by comparing the polynomial coefficients we get

$$
\left\{\begin{array}{l}
a_{1}=p+b_{1} \tag{5}\\
a_{2}=q+p b_{1}+b_{2} \\
a_{3}=q b_{1}+p b_{2}+b_{3} \\
\ldots \\
\ldots \ldots \ldots \ldots \ldots \\
a_{n-3}=q b_{n-5}+p b_{n-4}+b_{n-3} \\
a_{n-2}=q b_{n-4}+p b_{n-3}+b_{n-2} \\
a_{n-1}=q b_{n-3}+p b_{n-2}+r \\
a_{n}=q b_{n-2}+s
\end{array}\right.
$$

from which

$$
\left\{\begin{array}{l}
b_{1}=a_{1}-p \tag{6}\\
b_{2}=a_{2}-p b_{1}-q \\
b_{3}=a_{3}-p b_{2}-q b_{1} \\
\ldots \\
\ldots \ldots \ldots \ldots \\
b_{n-3}=a_{n-3}-p b_{n-4}-q b_{n-5} \\
b_{n-2}=a_{n-2}-p b_{n-3}-q b_{n-4} \\
r=a_{n-1}-p b_{n-2}-q b_{n-3} \\
s=a_{n}-q b_{n-2}
\end{array}\right.
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
b_{-1}=0 \\
b_{0}=1 \\
b_{k}=a_{k}-p b_{k-1}-q b_{k-2} \quad k=1,2, \ldots, n
\end{array}\right. \tag{8}\\
& \left\{\begin{array}{l}
r \equiv b_{n-1} \\
s \equiv b_{n}+p b_{n-1}
\end{array}\right. \tag{9}
\end{align*}
$$

Equations (8) and (9) allow to automatically determine the coefficients b_{k} of the reduced polynomial and the remainder coefficients r, s, the a_{k}, p, q being known.

2 Linearization of the system

Our goal is to get zero reminder in (3), therefore

$$
\left\{\begin{array}{l}
r(p, q)=0 \tag{10}\\
s(p, q)=0
\end{array}\right.
$$

The system (10) is non-linear, therefore the algorithm will solve it numerically using linear approximation of $r(p, q)$ and $s(p, q)$. Lets denote linear approximation of $r(p, q)$ and $s(p, q)$ as $\mathcal{L} r(p, q)$ and $\mathcal{L} s(p, q)$ respectively. Then linearized system (10) is

$$
\left\{\begin{array}{l}
\mathcal{L} r(p, q)=0 \tag{11}\\
\mathcal{L} s(p, q)=0
\end{array}\right.
$$

The algorithm starts with initial values $\left(p_{0}, q_{0}\right)$, solves the system (11) for linearization in $\left(p_{0}, q_{0}\right)$ getting $\left(p_{1}, q_{1}\right)$ as a solution. Then the pair (p_{1}, q_{1}) is used as a new p, q approximation and system is solved again, this time for $\left(p_{1}, q_{1}\right)$. Repeating this process we get sequence $\left(p_{0}, q_{0}\right),\left(p_{1}, q_{1}\right), \ldots$, $\left(p_{k}, q_{k}\right),\left(p_{k+1}, q_{k+1}\right)$ and we can define

$$
\left\{\begin{array}{l}
D_{p}(k)=p_{k+1}-p_{k} \tag{12}\\
D_{q}(k)=q_{k+1}-q_{k}
\end{array}\right.
$$

thus

$$
\left\{\begin{array}{l}
p_{k+1}=p_{k}+D_{p}(k) \tag{13}\\
q_{k+1}=q_{k}+D_{q}(k)
\end{array}\right.
$$

Linearization $\mathcal{L} r(p, q), \mathcal{L} s(p, q)$ in $\left(p_{k}, q_{k}\right)$ can be expressed using first order Taylor series expansion in $\left(p_{k}, q_{k}\right)$ as

$$
\left\{\begin{array}{l}
\mathcal{L} r(p, q)=r\left(p_{k}, q_{k}\right)+\frac{\partial r\left(p_{k}, q_{k}\right)}{\partial p}\left(p-p_{k}\right)+\frac{\partial r\left(p_{k}, q_{k}\right)}{\partial q}\left(q-q_{k}\right) \tag{14}\\
\mathcal{L} s(p, q)=s\left(p_{k}, q_{k}\right)+\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial p}\left(p-p_{k}\right)+\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial q}\left(q-q_{k}\right)
\end{array}\right.
$$

Substituting $\left(p_{k+1}, q_{k+1}\right)$ for (p, q) in (14) we get

$$
\left\{\begin{array}{l}
\mathcal{L} r\left(p_{k+1}, q_{k+1}\right)=r\left(p_{k}, q_{k}\right)+\frac{\partial r\left(p_{k}, q_{k}\right)}{\partial p}\left(p_{k+1}-p_{k}\right)+\frac{\partial r\left(p_{k}, q_{k}\right)}{\partial q}\left(q_{k+1}-q_{k}\right) \tag{15}\\
\mathcal{L} s\left(p_{k+1}, q_{k+1}\right)=s\left(p_{k}, q_{k}\right)+\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial p}\left(p_{k+1}-p_{k}\right)+\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial q}\left(q_{k+1}-q_{k}\right)
\end{array}\right.
$$

We use linearization in (p_{k}, q_{k}), therefore the system (11) is solved for $\left(p_{k+1}, q_{k+1}\right)$ (which follows from numerical algorithm described earlier), thus left sides are equal to zero

$$
\begin{align*}
& \left\{\begin{array}{l}
0=r\left(p_{k}, q_{k}\right)+\frac{\partial r\left(p_{k}, q_{k}\right)}{\partial p}\left(p_{k+1}-p_{k}\right)+\frac{\partial r\left(p_{k}, q_{k}\right)}{\partial q}\left(q_{k+1}-q_{k}\right) \\
0=s\left(p_{k}, q_{k}\right)+\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial p}\left(p_{k+1}-p_{k}\right)+\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial q}\left(q_{k+1}-q_{k}\right)
\end{array}\right. \tag{16}\\
& \left\{\begin{array}{l}
\frac{\partial r\left(p_{k}, q_{k}\right)}{\partial p}\left(p_{k+1}-p_{k}\right)+\frac{\partial r\left(p_{k}, q_{k}\right)}{\partial q}\left(q_{k+1}-q_{k}\right)=-r\left(p_{k}, q_{k}\right) \\
\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial p}\left(p_{k+1}-p_{k}\right)+\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial q}\left(q_{k+1}-q_{k}\right)=-s\left(p_{k}, q_{k}\right)
\end{array}\right. \tag{17}
\end{align*}
$$

to simplify the reading of the system (17) making the calculations even more compact and clear it is better to write the four partial derivatives

$$
\left\{\begin{array}{l}
r_{p}=\frac{\partial r\left(p_{k}, q_{k}\right)}{\partial p} \tag{18}\\
r_{q}=\frac{\partial r\left(p_{k}, q_{k}\right)}{\partial q} \\
s_{p}=\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial p} \\
s_{q}=\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial q}
\end{array}\right.
$$

using this and the equations (9) and (12) the system (17) can be

$$
\left\{\begin{array}{l}
r_{p} \cdot D_{p}(k)+r_{q} \cdot D_{q}(k)=-b_{n-1} \tag{19}\\
s_{p} \cdot D_{p}(k)+s_{q} \cdot D_{q}(k)=-b_{n}-p_{k} b_{n-1}
\end{array}\right.
$$

We now begin to calculate two of the four partial derivatives, in particular r_{q} and s_{q}, differentiate the system (20) with respect to the variable q

$$
\begin{gather*}
\left\{\begin{array}{l}
r=b_{n-1} \\
s=b_{n}+p_{k} b_{n-1}
\end{array}\right. \tag{20}\\
\left\{\begin{array}{l}
r_{q}=\frac{\partial r\left(p_{k}, q_{k}\right)}{\partial q}=\frac{\partial b_{n-1}\left(p_{k}, q_{k}\right)}{\partial q} \\
s_{q}=\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial q}=\frac{\partial b_{n}\left(p_{k}, q_{k}\right)}{\partial q}+p_{k} \cdot \frac{\partial b_{n-1}\left(p_{k}, q_{k}\right)}{\partial q}
\end{array}\right. \tag{21}
\end{gather*}
$$

and remembering that

$$
\left\{\begin{array}{l}
b_{-1}=0 \tag{22}\\
b_{0}=1 \\
b_{k}=a_{k}-p_{k} b_{k-1}-q b_{k-2} \quad k=1,2, \ldots, n
\end{array}\right.
$$

from which

$$
\left\{\begin{array}{l}
\frac{\partial b_{-1}\left(p_{k}, q_{k}\right)}{\partial q}=0 \\
\frac{\partial b_{0}\left(p_{k}, q_{k}\right)}{\partial q}=0 \\
\frac{\partial b_{k}\left(p_{k}, q_{k}\right)}{\partial q}=\underbrace{\frac{\partial a_{k}}{\partial q}}_{0}-p_{k} \cdot \frac{\partial b_{k-1}\left(p_{k}, q_{k}\right)}{\partial q}-q \cdot \frac{\partial b_{k-2}\left(p_{k}, q_{k}\right)}{\partial q}-b_{k-2} \quad k=1,2, \ldots, n \tag{23}
\end{array}\right.
$$

by defining a new coefficient c_{k}

$$
\begin{equation*}
c_{k}=-\frac{\partial b_{k}\left(p_{k}, q_{k}\right)}{\partial q} \tag{24}
\end{equation*}
$$

the system (23) can be rewritten

$$
\left\{\begin{array}{l}
c_{-1}=0 \tag{25}\\
c_{0}=0 \\
c_{k}=b_{k-2}-p_{k} c_{k-1}-q_{k} c_{k-2} \quad k=1,2, \ldots, n
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
r_{q}=\frac{\partial r\left(p_{k}, q_{k}\right)}{\partial q}=\frac{\partial b_{n-1}\left(p_{k}, q_{k}\right)}{\partial q}=-c_{n-1} \tag{26}\\
s_{q}=\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial q}=\frac{\partial b_{n}\left(p_{k}, q_{k}\right)}{\partial q}+p_{k} \cdot \frac{\partial b_{n-1}\left(p_{k}, q_{k}\right)}{\partial q}=-c_{n}-p_{k} c_{n-1}
\end{array}\right.
$$

3 Calculation of r_{p}, s_{p}

The purpose of this section is to calculate the remaining two partial derivatives r_{p}, s_{p} and show how the four partial derivatives are related with each other. For convenience, rewritten the equation (3)

$$
\begin{equation*}
P_{n}(x)=Q_{m}(x)\left(x^{2}+p x+q\right)+r x+s \tag{27}
\end{equation*}
$$

lets denote the polynomial $Q_{n-2}(x)$ as $Q_{m}(x)$ where (obviously) $m=n-2$, suppose we know the solutions of the quadratic factor

$$
\begin{equation*}
x^{2}+p x+q=0 \tag{28}
\end{equation*}
$$

and that these solutions are x_{-}and x_{+}.
Partially differentiate (27) with respect to the variables p and q we get

$$
\left\{\begin{array}{l}
\underbrace{\frac{\partial P_{n}(x)}{\partial p}}_{0}=\frac{\partial Q_{m}(x)}{\partial p} \cdot\left(x^{2}+p_{k} x+q_{k}\right)+Q_{m}(x) \cdot x+x \cdot \frac{\partial r\left(p_{k}, q_{k}\right)}{\partial p}+\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial p} \tag{29}\\
\underbrace{\frac{\partial P_{n}(x)}{\partial q}}_{0}=\frac{\partial Q_{m}(x)}{\partial q} \cdot\left(x^{2}+p_{k} x+q_{k}\right)+Q_{m}(x) \cdot 1+x \cdot \frac{\partial r\left(p_{k}, q_{k}\right)}{\partial q}+\frac{\partial s\left(p_{k}, q_{k}\right)}{\partial q}
\end{array}\right.
$$

both partial derivatives found on the first member of the system are both zero because the polynomial $P_{n}(x)$, in particular the coefficients a_{k} do not depend on p, q. The system (29) can be evaluated for any value of the variable x, but if we calculate it for the values x_{-}and x_{+}it can be simplified considerably. Let's start with $x=x_{-}$using the (18)

$$
\left\{\begin{array}{l}
x_{-} \cdot r_{p}+s_{p}=-Q_{m}\left(x_{-}\right) \cdot x_{-} \tag{30}\\
x_{-} \cdot r_{q}+s_{q}=-Q_{m}\left(x_{-}\right)
\end{array}\right.
$$

multiplying the second equation of (30) by x_{-}

$$
\left\{\begin{array}{l}
x_{-} \cdot r_{p}+s_{p}=-Q_{m}\left(x_{-}\right) \cdot x_{-} \tag{31}\\
x_{-}^{2} \cdot r_{q}+x_{-} \cdot s_{q}=-Q_{m}\left(x_{-}\right) \cdot x_{-}
\end{array}\right.
$$

from which

$$
\begin{equation*}
x_{-} \cdot r_{p}+s_{p}=x_{-}^{2} \cdot r_{q}+x_{-} \cdot s_{q} \tag{32}
\end{equation*}
$$

similarly for $x=x_{+}$we get the system (33) from which the functional dependence of the four partial derivatives is evident, a linear system of two variabiles r_{p}, s_{p} that we can solve with the Cramer rule

$$
\begin{gather*}
\left\{\begin{array}{l}
x_{-} \cdot r_{p}+s_{p}=x_{-}^{2} \cdot r_{q}+x_{-} \cdot s_{q} \\
x_{+} \cdot r_{p}+s_{p}=x_{+}^{2} \cdot r_{q}+x_{+} \cdot s_{q}
\end{array}\right. \tag{33}\\
\Delta=\left|\begin{array}{ll}
x_{-} & 1 \\
x_{+} & 1
\end{array}\right|=\left(x_{-}-x_{+}\right) \tag{34}\\
\Delta_{r_{p}}=\left|\begin{array}{ll}
x_{-}^{2} r_{q}+x_{-} s_{q} & 1 \\
x_{+}^{2} r_{q}+x_{+} s_{q} & 1
\end{array}\right|=\left(x_{-}^{2}-x_{+}^{2}\right) \cdot r_{q}+\left(x_{-}-x_{+}\right) \cdot s_{q} \tag{35}\\
\Delta_{s_{p}}=\left|\begin{array}{ll}
x_{-} & x_{-}^{2} r_{q}+x_{-} s_{q} \\
x_{+} & x_{+}^{2} r_{q}+x_{+} s_{q}
\end{array}\right|=-x_{-} \cdot x_{+} \cdot\left(x_{-}-x_{+}\right) \cdot r_{q} \tag{36}
\end{gather*}
$$

from which

$$
\begin{gather*}
r_{p}=\frac{\Delta_{r_{p}}}{\Delta}=\left(x_{-}+x_{+}\right) \cdot r_{q}+s_{q} \tag{37}\\
s_{p}=\frac{\Delta_{s_{p}}}{\Delta}=-x_{-} \cdot x_{+} \cdot r_{q} \tag{38}
\end{gather*}
$$

remembering now that x_{-}and x_{+}are both solutions of (28), we can rewrite the equation in this way

$$
x^{2}+p x+q=\left(x-x_{-}\right)\left(x-x_{+}\right)=x^{2}-\left(x_{-}+x_{+}\right) \cdot x+x_{-} \cdot x_{+}
$$

where it is evident that

$$
\begin{equation*}
p=-\left(x_{-}+x_{+}\right) \quad \text { and } \quad q=x_{-} \cdot x_{+} \tag{39}
\end{equation*}
$$

equations (37) and (38) using (39) become

$$
\begin{gather*}
r_{p}=s_{q}-p_{k} \cdot r_{q} \tag{40}\\
s_{p}=-q_{k} \cdot r_{q} \tag{41}
\end{gather*}
$$

remembering the (26) the four partial derivatives can be thus written

$$
\left\{\begin{array}{l}
r_{q}=-c_{n-1} \tag{42}\\
s_{q}=-c_{n}-p_{k} \cdot c_{n-1} \\
r_{p}=s_{q}-p_{k} \cdot r_{q}=\left(-c_{n}-p_{k} c_{n-1}\right)-p_{k} \cdot\left(-c_{n-1}\right)=-c_{n} \\
s_{p}=-q_{k} \cdot r_{q}=-q_{k} \cdot\left(-c_{n-1}\right)=q_{k} \cdot c_{n-1}
\end{array}\right.
$$

4 Solution of linear system

substituting the expressions just calculated in the system (19) we obtain

$$
\begin{align*}
& \left\{\begin{array}{l}
-c_{n} \cdot D_{p}(k)-c_{n-1} \cdot D_{q}(k)=-b_{n-1} \\
q_{k} c_{n-1} \cdot D_{p}(k)-\left(c_{n}+p_{k} c_{n-1}\right) \cdot D_{q}(k)=-b_{n}-p_{k} b_{n-1}
\end{array}\right. \tag{43}\\
& \left\{\begin{array}{l}
c_{n} \cdot D_{p}(k)+c_{n-1} \cdot D_{q}(k)=b_{n-1} \\
-q_{k} c_{n-1} \cdot D_{p}(k)+\left(c_{n}+p_{k} c_{n-1}\right) \cdot D_{q}(k)=b_{n}+p_{k} b_{n-1}
\end{array}\right. \tag{44}
\end{align*}
$$

subtracting from the second equation of (44) the first equation multiplied by p_{k}

$$
\left\{\begin{array}{l}
c_{n} \cdot D_{p}(k)+c_{n-1} \cdot D_{q}(k)=b_{n-1} \tag{45}\\
-\left(p_{k} c_{n}+q_{k} c_{n-1}\right) \cdot D_{p}(k)+c_{n} \cdot D_{q}(k)=b_{n}
\end{array}\right.
$$

the system (45) can be solved again with Cramer

$$
\begin{gather*}
D=\left|\begin{array}{cc}
c_{n} & c_{n-1} \\
-\left(p_{k} c_{n}+q_{k} c_{n-1}\right) & c_{n}
\end{array}\right|=c_{n}^{2}+c_{n-1}\left(p_{k} c_{n}+q_{k} c_{n-1}\right) \tag{46}\\
\Delta_{D_{p}}=\left|\begin{array}{cc}
b_{n-1} & c_{n-1} \\
b_{n} & c_{n}
\end{array}\right|=b_{n-1} c_{n}-b_{n} c_{n-1} \tag{47}\\
\Delta_{D_{q}}=\left|\begin{array}{cc}
c_{n} & b_{n-1} \\
-\left(p_{k} c_{n}+q_{k} c_{n-1}\right) & b_{n}
\end{array}\right|=b_{n} c_{n}+b_{n-1}\left(p_{k} c_{n}+q_{k} c_{n-1}\right) \tag{48}
\end{gather*}
$$

from which

$$
\begin{gather*}
D_{p}=\frac{\Delta_{D_{p}}}{D}=\frac{b_{n-1} c_{n}-b_{n} c_{n-1}}{c_{n}^{2}+c_{n-1}\left(p_{k} c_{n}+q_{k} c_{n-1}\right)} \tag{49}\\
D_{q}=\frac{\Delta_{D_{q}}}{D}=\frac{b_{n} c_{n}+b_{n-1}\left(p_{k} c_{n}+q_{k} c_{n-1}\right)}{c_{n}^{2}+c_{n-1}\left(p_{k} c_{n}+q_{k} c_{n-1}\right)} \tag{50}
\end{gather*}
$$

5 Final steps and Algorithm

The core of the algorithm was described at the beginning of section 2. Two things are still necessary and must be highlighted in order to solve the linear system (19), in particular:

- Initial values
- Terminating conditions

Initial values

- The initial values of p_{0}, q_{0}, if they are not known, can both be taken as one this choice from the tests carried out allows the convergence of the algorithm even in the presence of coincident roots and/or of some coefficients of the null polynomial.
- The initial value of the error which must necessarily be greater than the desired accuracy or tolerance toll (for example error $=1$).
- The value of the iteration counter $\mathrm{L}=0$ (no iteration has yet been done)

Terminating conditions

Core termination conditions can be:

- The error reached is less than or equal to the desired accuracy toll
- The number of iterations L has exceeded the maximum value (set for example in 80). If this happens it means that the algorithm is not converging.

For each iteration we can update the error with the following formula:

$$
\begin{equation*}
\text { error }=\max \left(\left|D_{p}\right|,\left|D_{q}\right|\right) \tag{51}
\end{equation*}
$$

Algorithm

1. assigned n, α_{k}, toll
2. check that α_{0} is equal to 1 if different divide all the coefficients α_{k} with the value of α_{0}
3. if $n>2$ and fixed $p_{0}=q_{0}=1$, error $=1$ and $\mathrm{L}=0$ are calculated $b_{k}, c_{k}, D_{p}, D_{q}$, updates error, $p_{k+1}=p_{k}+D p, q_{k+1}=q_{k}+D q$ until error \leq toll or $\mathrm{L}>80$, show roots of quadratic factor $x^{2}+p x+q$ or exit with message error (if $L>80$)
4. $n=n-2$, replace a_{k} with b_{k} return to step 3
5. if $n=2$ or $n=1$ calculate the polynomial root(s)

Convergence of the algorithm

I have limited the maximum number of iterations of the algorithm L to 80 to understand if the algorithm is able to converge.

MATLAB ${ }^{\circledR}$ Bairstow Code

Before going into the technical details of drafting the algorithm code for DM42, I report the source code of the Bairstow algorithm that I made years ago in MATLAB ${ }^{\circledR}$ by which I was inspired for the recoding for the DM42

```
function rad = bairstow(a,toll,L)
if nargin == 1
    toll = 1e-6;
    L = 80;
elseif nargin == 2
    L = 80;
end
n = length(a) -1;
rad = [];
while n > 2
    p = 1;
    q = 1;
    [p,q,b,iter,error] = bairstkernel(a,p,q,toll,L);
    x1 = -0.5* (p+sqrt (p*p-4*q));
    x2 = -p-x1;
    rad = [rad x1 x2];
    a = b(2:n);
    n = n-2;
    disp(iter)
    disp(error)
end
if n == 2
    x1 = -0.5*(a(2)+sqrt(a(2)*a(2)-4*a(3)));
    x2 = -a(2)-x1;
    rad = [rad x1 x2];
elseif n == 1
    x1 = -a(2);
    rad = [rad xl];
end
rad = rad';
return
```

```
function \([p, q, b, i t e r, e r r o r]=\) bairstkernel (a, \(p, q\), toll, L)
if \(a(1) \neq 1\)
        \(a=a / a(1) ;\)
end
\(\mathrm{n}=\) length (a) -1 ;
\(a=a(2: n+1) ;\)
error \(=1\);
iter \(=0\);
while (error \(>\) toll)\&\&(iter \(\leq \mathrm{L})\)
    \(\mathrm{b}(1)=0\);
    b(2) \(=1\);
    for \(k=1: n\)
        \(\mathrm{b}(\mathrm{k}+2)=\mathrm{a}(\mathrm{k})-\mathrm{p} * \mathrm{~b}(\mathrm{k}+1)-\mathrm{q} * \mathrm{~b}(\mathrm{k})\);
    end
    \(\mathrm{c}(1)=0\);
    \(\mathrm{C}(2)=0\);
    for \(k=1: n\)
        \(\mathrm{c}(\mathrm{k}+2)=\mathrm{b}(\mathrm{k})-\mathrm{p} \star \mathrm{c}(\mathrm{k}+1)-\mathrm{q} * \mathrm{c}(\mathrm{k})\);
        end
        \(D=c(n+2) * c(n+2)+c(n+1) *(p * c(n+2)+q * c(n+1)) ;\)
        \(D p=(b(n+1) * c(n+2)-b(n+2) * c(n+1)) / D ;\)
        \(D q=(b(n+2) * c(n+2)+b(n+1) *(p * c(n+2)+q * c(n+1))) / D ;\)
        error \(=\max (\operatorname{abs}(\mathrm{Dp}), \operatorname{abs}(\mathrm{Dq}))\);
        \(p=p+D p ;\)
        \(q=q+D q ;\)
        iter \(=\) iter +1;
end
if (iter>L)
    disp('ATTENTION algorithm don''t converge')
    return
end
return
```


DM42 Resources Registers Used

REGISTER/S	SCOPE
R00 - R22	Polynomial coefficients $P_{n}(x)=\alpha_{0} x^{n}+\alpha_{1} x^{n-1}+\cdots \alpha_{n}$
R30 - R52	Polynomial reduction and remainder $Q_{n-2}(x)=x^{n-2}+$ $b_{1} x^{n-3}+\cdots b_{n}$
R60 - R82	Coefficients c_{k}
R84	b_{n+1}
R85	b_{n+2}
R86	D_{q}
R87	D_{p}
R88	D
R89	k for loop index
R90	Maximum degree of polynomial $n \leq 22$
R91	Cycle indices and/or pointers
R92	Cycle indices and/or pointers or c_{n+1}
R93	Cycle indices and/or pointers or c_{n+2}
R94	Cycle indices and/or pointers
R95	p_{k} value on departure $p_{0}=0$
R96	q_{k} value on departure $q_{0}=0$
R97	error $=$ max $(\|D p\|,\|D q\|)$ on departure error $=1.0$
R98	Number of iterations m
R99	Desired tolerance / accuracy toll $\gg 1 e-33$

DM42 Resources Main Subroutines Used

NAME	SCOPE
A	Read the polynomial $P_{n}(x)=\alpha_{0} x^{n}+\alpha_{1} x^{n-1}+\cdots \alpha_{n}$ coefficients
B	Normalizes the polynomial coefficients if $a_{0} \neq 1$
D	Kernel of the algorithm to determine $x^{2}+p x+q=0$
d	Main while loop of algorithm
J	Copy $a_{k} \longleftarrow b_{k}$ and lower the polynomial degree $n \longleftarrow n-2$
a	Solves $x^{2}+p x+q=0$ and displays solutions
$01 \& \mathrm{c}$	Solves if polynomial degree $n=1$ and display solution
$02 \& \mathrm{~b}$	Solves if polynomial degree $n=2$ and displays solutions
04	Check convergence if $m>80--->E R R O R$

Print the solutions obtained to the text files

1. Shift + SETUP \longrightarrow Printing set Text Print (X)
2. Shift + PRINT \longrightarrow PON (enable) MAN (enable)

DM42 code

00 \{ 819-Byte Prgm \}
01 LBL "BAI"
02 SIZE 100 @ Set 100 real registers
03 CLRG @ Clear all registers
04 ALL @ View all digits on the LCD
05 CLLCD @ Clears the LCD display
06 CLST @ Clears all registers of the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$ stack
07 "Polynomial Root"
08 AVIEW
09 PSE
10 PSE
11 PSE
12 PSE
13 "Finder n22"
14 AVIEW
15 PSE
16 PSE
17 PSE
18 PSE
19 "a0X个n+...+an"
20 AVIEW
21 PSE
22 PSE
23 PSE
24 PSE
25 " $\mathrm{n}=$? "
26 PROMPT @ Reads the degree of polynomial n
27 STO 90
28 STO 91
29 CLA
30 " $\mathrm{n}=$ "
31 AIP
32 AVIEW
33 PSE
34 CLST

```
35 CLA
36 RCL 91
371000
38\div
39 STO 92
4 0 ~ L B L ~ A ~ @ ~ R e a d s ~ a l l ~ t h e ~ p o l y n o m i a l ~ c o e f f i c i e n t s
41 " X\uparrow" @ starting from the highest degree
4 2 ~ R C L ~ 9 1 ~
4 3 ~ A I P
4 4 ~ A V I E W
4 5 ~ P R O M P T
4 6 ~ S T O ~ I N D ~ 9 3 ~
4 7 \text { CLST}
48 = " @ATTENTION look at the photo after the code !!!
4 9 ~ A R C L ~ I N D ~ 9 3 ~
5 0 ~ A V I E W
51 PSE
52 PSE
531
54 STO+ 93
55 STO- 91
5 6 ~ R C L ~ 9 2 ~
5 7 ~ I S G ~ 9 2 ~
58 GTO A
59 CLST
601
6 1 ~ R C L ~ 0 0 ~ @ ~ C h e c k ~ i f ~ t h e ~ p o l y n o m i a l ~ i s ~ m o n i c ~ i n ~ t h e ~ c a s e
62 XY? @ATTENTION look at the photo after the code !!!
6 3 ~ X E Q ~ B ~ @ ~ d o e s ~ n o t ~ n o r m a l i z e ~ i t ~
64 " toll = ?"
6 5 ~ P R O M P T ~ @ ~ R e a d s ~ t h e ~ t o l e r a n c e ~ r e q u i r e d ~ t o l l ~ \gg ~ 1 E - 3 3
6 6 ~ S T O ~ 9 9 ~
6 7 \text { CLA}
68 " toll = "
```



```
7 0 ~ A V I E W
7 1 ~ P S E
```

72 PSE
73 CLA
74 CLST
75 "... running"
76 AVIEW
77 LBL d @ Main while loop of the Bairstow algorithm
783
79 STO 94
80 RCL 94
81 RCL 90
82 X<Y?
83 GTO 02 @ Check if $\mathrm{n}<3$ ($\mathrm{n}=2$ or $\mathrm{n}=1$) jump to GTO 02
841 @ otherwise it initializes 1 = $q=1$ and calls
85 STO 95 @ subroutine D find $X \uparrow 2+p X+q=0$
86 STO 96 @ subroutine J copy $A n<--B n$ and lower polynomial degree n <--- $n-2$
87 XEQ D @ subroutine a solves $\mathrm{X} \uparrow 2+\mathrm{pX}+\mathrm{q}=0$ and displays solutions
88 XEQ J
89 XEQ a
90 STOP
91 GTO d
92 LBL 02 @ Check if $\mathrm{n}=2$ calculates the solutions of the 2 degree trinomial
932 @ using the subroutine b
94 STO 94 @ if $\mathrm{n}=1$ jump to 01
95 RCL 94
96 RCL 90
97 XY? @ATTENTION look at the photo after the code !!!
98 GTO 01
99 XEQ b
100 GTO 90
101 LBL 01 @ If $\mathrm{n}=1$ determines the real solution and displays the solution
102 XEQ c @ using the subroutine c
103 LBL 90 @ All the solutions have been found STOP
104 CLA
105 " ... stop "
106 AVIEW
107 RTN
108 LBL B @ Subroutine D to make the polynomial Pn(x) monic


```
146 STO+ 94
147 STO+ 94 @ Pointer used to save / access b (k + 2)
148 0 @ Inizialize b(1) <--- 0
1 4 9 ~ S T O ~ I N D ~ 9 2 ~
1501
@ Inizialize b(2) <--- 1
151 STO IND 93
152 LBL E
@ FOR loop to calculate all b (k)
153 RCL IND 91
1 5 4 ~ S T O ~ I N D ~ 9 4 ,
155 RCL IND 93
156 RCL 95
157 x
158 +/-
1 5 9 ~ S T O + ~ I N D ~ 9 4 ~
160 RCL IND 92
1 6 1 ~ R C L ~ 9 6 ~
162 x
163 +/-
164 STO+ IND 94
1651
166 STO+ 91
167 STO+ 92
168 STO+ 93
169 STO+ 94
1 7 0 \text { RCL 89}
171 ISG 89
172 GTO E
1 7 3 ~ R C L ~ I N D ~ 9 2 ~ @ ~ C a l l s ~ b ~ ( n ~ + ~ 1 ) ~ a n d ~ s a v e s ~ i t ~ i n ~ r e g i s t e r ~ 8 4
1 7 4 \text { STO 84 @ for subsequent calculations D, Dp and Dq}
1 7 5 ~ R C L ~ I N D ~ 9 3 ~ @ ~ C a l l s ~ b ~ ( n ~ + ~ 2 ) ~ a n d ~ s a v e s ~ i t ~ i n ~ r e g i s t e r ~ 8 5 ~
1 7 6 \text { STO 85 @ for subsequent calculations D, Dp and Dq}
177 30 @ Initialize pointer 91 where b (k) are located
178 STO 91
1 7 9 ~ R C L ~ 9 0 ~ @ ~ I n i t i a l i z e s ~ t h e ~ i n d e x ~ o f ~ t h e ~ F O R ~ l o o p
180 1000 @ and saves it in register 89
181\div
1 8 2 1
```

```
183 +
1 8 4 ~ S T O ~ 8 9 ~
18560 @ registers location where c(k) are saved
186 STO 92 @ Pointer used to save / access c(k)
1 8 7 \text { STO 93}
188 STO 94
189 1
190 STO+ 93 @ Pointer used to save / access c(k+1)
191 STO+ 94
192 STO+ 94 @ Pointer used to save / access c(k+2)
193 0 @ Inizialize c(1) <--- 0
194 STO IND 92
195 0 @ Inizialize c(2) <--- 0
1 9 6 ~ S T O ~ I N D ~ 9 3 ~
197 LBL F @ FOR loop to calculate all c (k)
1 9 8 \text { RCL IND } 9 1
199 STO IND 94
200 RCL IND 93
201 RCL 95
202 x
203 +/-
204 STO+ IND 94
205 RCL IND 92
206 RCL 96
207 x
208 +/-
209 STO+ IND 94
210 1
211 STO+ 91
212 STO+ 92
213 STO+ 93
214 STO+ 94
215 RCL 89
216 ISG 89
217 GTO F
218 RCL IND 92 @ Call c (n + 1) and save it in register 92
219 STO 92 @ for subsequent calculations D, Dp and Dq
```

220 RCL IND 93 © Call c ($\mathrm{n}+2$) and save it in register 93
221 STO 93 @ for subsequent calculations D, Dp and Dq
222 CLST © Clears all registers of the X, Y, Z, T stack
223 RCL 95 @ Calculate D
224 RCL 93
$225 \times$
226 RCL 96
227 RCL 92
$228 \times$
$229+$
230 RCL 92
$231 \times$
232 RCL 93
233 RCL 93
$234 \times$
$235+$
236 STO 88
237 RCL 84
© Calculate Dp
238 RCL 93
$239 \times$
240 RCL 85
241 RCL 92
$242 \times$
243 -
244 RCL 88
$245 \div$
246 STO 87
247 RCL 95
248 RCL 93
$249 \times$
250 RCL 96
251 RCL 92
$252 \times$
$253+$
254 RCL 84
$255 \times$
256 RCL 85

257 RCL 93
$258 \times$
259 +
260 RCL 88
$261 \div$
262 STO 86
263 RCL 87 @ Calculate and save in the register $97<---\max (|\mathrm{Dp}|,!\mathrm{Dq} \mid)$
264 ABS
265 STO ST X
266 RCL 86
267 ABS
268 STO ST Y
269 X>Y?
270 GTO G
271 RCL 87
272 ABS
273 STO 97
274 GTO H
275 LBL G
276 RCL 86
277 ABS
278 STO 97
279 LBL H
280 RCL 87 @ Update p <--- p + Dp
281 STO+ 95
282 RCL 86 @ Update q <--- q + Dq
283 STO+ 96
2841 @ Update the number of iterates $m<---m+1$
285 STO+ 98
28680 @ Test if m > 80 ?
287 STO ST X
288 RCL 98
289 X>Y?
290 GTO 04
291 RCL 99 @ Test if $\max (|D p|,!D q \mid)<t o l l$ if you go out
292 RCL 97 @ otherwise continue to cycle
293 X>Y?

294 GTO I
295 RTN
296 LBL J @ Polynomial degree n <--- n-2 \& subroutine J copy Ak<-- Bk
2970
298 STO 91
29931
300 STO 92
301 RCL 90
3021
303 -
304 STO 93
3051000
$306 \div$
307 STO 94
308 LBL 88
309 RCL IND 92
310 STO IND 91
3111
312 STO 91
313 STO+ 92
314 RCL 94
315 ISG 94
316 GTO 88
317 RCL 90
3182
319 -
320 STO 90
321 RTN
322 LBL a @ subroutine a calculates and displays the
323 CLA © solutions of $\mathrm{X} \uparrow 2+\mathrm{pX}+\mathrm{q}=0$
324 CLST
325 "... m = "
326 ARCL 98
327 " n = "
328 ARCL 90
329 AVIEW
330 RCL 95

331 +/-
3322
$333 \div$
334 STO 91
335 X $\uparrow 2$
336 RCL 96
337 -
338 STO 92
339 CLST
340 RCL 91
341 RCL 92
342 SQRT
$343+$
344 RCL 91
345 RCL 92
346 SQRT
347 -
348 PRSTK
349 RTN
350 LBL b @ If n = 2 calculates and displays the solutions
351 CLA
352 CLST
353 "... continue"
354 AVIEW
355 RCL 01
356 +/-
3572
$358 \div$
359 STO 91
360 X $\uparrow 2$
361 RCL 02
362 -
363 STO 92
364 CLST
365 RCL 91
366 RCL 92
367 SQRT
$368+$
369 RCL 91
370 RCL 92
371 SQRT
372 -
373 PRSTK
374 RTN
375 LBL c @ If $\mathrm{n}=1$ calculate and visualize the real solution
376 CLA
377 CLST
378 "... continue"
379 AVIEW
380 RCL 01
381 +/-
382 STO 91
383 CLST
384 RCL 91
385 PRSTK
386 RTN
387 LBL 04 @ Test if m > 80 ?
388 CLA
389 "ERROR m > 80 ! "
390 AVIEW
391 CLST
392 STOP
393 RTN

ATTENTION

ATTENTION
ATTENTION

48 ト" = "

$62 \mathrm{X} \neq \mathrm{Y}$?

$97 \mathrm{X} \neq \mathrm{Y}$?

Examples and Comparisons

Example1
$\mathrm{P}_{5}(x)=2(x-1)(x-2)(x-3)(x-4)(x-5)=$
$=2 x^{5}-30 x^{4}+170 x^{3}-450 x^{2}+548 x-240=0$

DM42

Tue 07/21/2020 5:10 PM	Tue 07/21/2020 5:10 PM	Tue 07/21/2020 5:10 PM	家
Polynomial Root	Finder $\mathrm{n} \leq 22$	$a 0 X \uparrow n+\ldots+a n$	
T: 0	T: 0	T: 0	
Z: 0	Z: 0	Z: 0	
Y: 0	$Y: 0$	$Y: 0$	
X: 0	X: 0	X: 0	
Tue 07/21/2020 5:10 PM	Tue 07/21/2020 5:17 PM	Tue 07/21/2020 5:10 PM	E
$\mathrm{n}=$?	$\mathrm{n}=5^{(00)}$	$x \uparrow 5=\stackrel{(0 n)}{2}$	
T: 0	T: 0	T: 0	
Z: 0	Z: 0	Z: 0	
Y: 0	Y: 0	Y: 0	
X: 0	X: 5	X: 0	
Tue 07/21/2020 5:10 PM			家
$x \uparrow 4=-30$	$X \uparrow 3=\stackrel{(0) 1}{(0)} 170$	$x \uparrow 2=-450$	
T: 0	T: 0	T: 0	
Z: 0	Z: 0	Z: 0	
Y: 0	Y: 0	Y: 0	
X: 0	X: 0	X: 0	

Tue 07／21／2020 5：11 PM 大	Tue 07／21／2020 5：11 PM－	Tue 07／21／2020 5：11 PM	E
$x \uparrow 1=548$	$X \uparrow 0=\stackrel{(0)}{(0)}-240$	$\text { toll } \stackrel{(0) 0}{=} 1 . \mathrm{E}-21$	
T： 0	T： 0	T： 1	
Z： 0	Z： 0	Z： 5.005	
Y： 0	Y： 0	$Y: 1$	
X： 0	X： 0	X：1．e－21	
Tue 07／21／2020 5：11 PM ⿴囗十心	Tue 07／21／2020 5：12 PM－	Tue 07／21／2020 5：12 PM	宫
$\ldots \mathrm{m}=11 \mathrm{n}=3$	$\ldots m=10 \mathrm{n}=1$	．．．stop	
T： 0	T： 0	T： 0	
Z： 0	Z： 0	Z： 0	
Y： 2	Y： 4	Y： 0	
X： 1	X： 3	$X: 5$	

Polynomial Root
Finder $\mathrm{n}<22$
a0X＾n＋．．．+an
$\mathrm{n}=5$
X～5
Polynomial Root
Finder n22
a0X＾n＋．．．＋an
$\mathrm{n}=5$
X～5
$X^{\wedge} 5=2$
X～4
$x^{\wedge} 4=-30$
X＾3
$x^{\wedge} 3=170$
X～2
$X^{\wedge} 2=-450$
$X^{\wedge} 1$
$X^{\wedge} 1=548$
X～0
$\mathrm{X}^{\wedge} 0=-240$
toll $=1 .-21$
．．．running

$$
\ldots m=11 n=3
$$

$\mathrm{T}=$	0
$\mathrm{Z}=$	0
$\mathrm{Y}=$	2
$\mathrm{X}=$	1
$\ldots \mathrm{m}=10 \mathrm{n}=1$	
$\mathrm{T}=$	0
Z=	0
$\mathrm{Y}=$	4
$\mathrm{X}=$	3
. continue	
$\mathrm{T}=$	0
Z=	0
$Y=$	0
$\mathrm{X}=$	5
. . . stop	

Example2 ${ }^{2}$

$\mathrm{P}_{5}(x)=x^{5}-17.8 x^{4}+99.41 x^{3}-261.218 x^{2}+352.611 x-134.106=0$

DM42


```
            XEQ "BAI"
    n = ?
            5 RUN
n = 5
X^5
X^5
```

 1 RUN
 [^1]```
X^5 = 1
X^4
X^4
 -17.8 RUN
X^4 = -17.8
X^3
x^3
 99.41 RUN
X^3 = 99.41
X^2
X^2
 -261.218 RUN
X^2 = -261.218
X^1
X^1
 352.611 RUN
X^1 = 352.611
X^0
X^0
 -134.106 RUN
X^0 = -134.106
toll = ?
 1-12 RUN
toll = 1.-12
... running
... m = 8 n = 3
T= 0
Z= 0
Y= 3.61986841536
X= 5.80131584643-1
 RUN
...m = 6 n = 1
T=
 0
Z=
 0
Y= 1.65 i1.8648056199
```

```
X= 1.65 -i1.8648056199
 RUN
... continue
T= 0
Z= 0
Y= 0
X= 10.3
 ... stop
Comparison of solutions with MATLAB}\mp@subsup{}{}{\circledR
>> p = [1 [17.8 99.41 -261.218 352.611 -134.106];
>> roots(p)
ans =
 10.299999999999999 + 0.000000000000000i
 3.619868415357074 + 0.000000000000000i
 1.649999999999998 + 1.864805619897151i
 1.649999999999998 - 1.864805619897151i
 0.580131584642934 + 0.000000000000000i
>> vpa(roots(p),50) % 50 digits of precision !!!
ans =
```

    10.3
        3.6198684153570743760042205394711345434188842773438
    \(1.65+1.8648056198971516398554778633752676781690560441755 i\)
    1.65 - \(1.8648056198971516398554778633752676781690560441755 i\)
        0.58013158464293379523724070168100297451019287109375
    
## Example3

In numerical analysis, Wilkinson's polynomial is a specific polynomial which was used by James H. Wilkinson in 1963 to illustrate a difficulty when finding the root of a polynomial: the location of the roots can be very sensitive to perturbations in the coefficients of the polynomial.

The polynomial is

$$
P_{20}(x)=\prod_{i=1}^{20}(x-i)=a_{0} x^{20}+a_{1} x^{19}+a_{2} x^{18}+\cdots+a_{20}
$$

and toll $=1 \cdot 10^{-12}$

| Coefficient | Value |
| :--- | :--- |
| $\mathrm{a}_{0}$ | 1 |
| $\mathrm{a}_{1}$ | -210 |
| $\mathrm{a}_{2}$ | 20615 |
| $\mathrm{a}_{3}$ | -1256850 |
| $\mathrm{a}_{4}$ | 53327946 |
| $\mathrm{a}_{5}$ | -1672280820 |
| $\mathrm{a}_{6}$ | 40171771630 |
| $\mathrm{a}_{7}$ | -756111184500 |
| $\mathrm{a}_{8}$ | 11310276995381 |
| $\mathrm{a}_{9}$ | -135585182899530 |
| $\mathrm{a}_{10}$ | 1307535010540395 |
| $\mathrm{a}_{11}$ | -10142299865511450 |
| $\mathrm{a}_{12}$ | 63030812099294896 |
| $\mathrm{a}_{13}$ | -311333643161390656 |
| $\mathrm{a}_{14}$ | 1206647803780373248 |
| $\mathrm{a}_{15}$ | -3599979517947607040 |
| $\mathrm{a}_{16}$ | 8037811822645052416 |
| $\mathrm{a}_{17}$ | -12870931245150988288 |
| $\mathrm{a}_{18}$ | 13803759753640704000 |
| $\mathrm{a}_{19}$ | -8752948036761600000 |
| $\mathrm{a}_{20}$ | 2432902008176640000 |

## DM42

| Mon 13／07／2020 11：57 AM 3．10V ¢ | Mon 13／07／2020 11：58 AM 3．10V 大 | Mon 13／07／2020 12：00 PM 3．10V 天品 |
| :---: | :---: | :---: |
| $\ldots \mathrm{m}=15 \mathrm{n}=18$ | $\ldots m=20 \mathrm{n}=16$ | $\ldots \mathrm{m}=24 \mathrm{n}=14$ |
| T： 0 | T： 0 | T： 0 |
| Z： 0 | Z： 0 | Z： 0 |
| Y： 2 | Y： 4.00000000287 | Y： 6.00000071885 |
| X： 1 | X： 2.99999999998 | X： 4.99999993513 |
| Mon 13／07／2020 12：01 PM 3．10V $\sim$ | Mon 13／07／2020 12：02 PM 3．10V 分 | Mon 13／07／2020 12：03 PM 3．10V 只 |
| $\ldots m=25 n=12$ | $\ldots m=26 \mathrm{n}=10$ | $\ldots m=26 \mathrm{n}=8$ |
| T： 0 | T： 0 | T： 0 |
| Z： 0 | Z： 0 | Z： 0 |
| Y： 8.00002269491 | Y： 10.0001891858 | Y： 12.0005305469 |
| X： 6.99999510388 | X： 8.99992418614 | X： 10.9996398136 |
| Mon 13／07／2020 12：04 PM 3．10V $\mathrm{\sim}$－ | Mon 13／07／2020 12：05 PM 3．10V ¢ | Mon 13／07／2020 12：06 PM 3．10V＜ |
| $\ldots m=24 \mathrm{n}=6$ | $\ldots m=21 \mathrm{n}=4$ | $\ldots \mathrm{m}=16 \mathrm{n}=2$ |
| ```T: 0 Z: 0 Y: 14.0005392168 X: 12.999392852``` | T： 0 | T： 0 |
|  | Z： 0 | Z： 0 |
|  | Y： 16.0001899451 | Y： 18.0000186006 |
|  | X： 14.9996315405 | X： 16.9999284161 |
| X： 12.999392852 | Mon 13／07／2020 12：07 PM 3．10V － |  |
|  | ．．．stop |  |
|  | T： 0 |  |
|  | Z： 0 |  |
|  | Y： 20.0000002222 |  |
|  | X： 18.9999970186 |  |

```
XEQ "BAI"
 n = ?
 20 RUN
 n = 20
 X^20
 X^20
 1 RUN
 X^20 = 1
 X^19
 X^19
 -210 RUN
 X^19 = -210
 X^18
 X^18
```

```
 20,615 RUN
 X^18=20,615
 X^17
 X^17
 -1,256,850 RUN
 X^17 = -1,256,850
 X^16
 X^16
 53,327,946 RUN
 X^16 = 53,327,946
 X^15
 X^15
 -1,672,280,820 RUN
 X^15 = -1,672,280,820
 X^14
 X^14
 40,171,771,630 RUN
 X^14 = 40,171,771,630
 X^13
 X^13
 -756,111,184,500 RUN
 X^13 = -756,111, 184,500
 X^12
 X^12
 11,310,276,995,381 RUN
 X^12 = 1.1310276995413
 X^11
 X^11
-135,585,182,899,530 RUN
 X^11 = -1.35585182914
 X^10
 X^10
1,307,535,010,540,395 RU
N
 X^10 = 1.3075350105415
 X^9
 X^9
```

```
-10,142, 299, 865,511,450
RUN
 X^9 = -1.0142299865516
 X^8
 X^8
63,030,812,099,294,896 R
UN
 X^8 = 6.3030812099316
 X^7
 X^7
 -311, 333,643,161, 390,656
 RUN
 X^7 = -3.1133364316117
 X^6
 X^6
 1,206,647, 803,780,373,24
8
 X^6 = 1.2066478037818
 X~5
 X^5
 -3,599,979,517,947,607,0
 4 0
 RUN
 X^5 = -3.5999795179518
 X^4
 X^4
 8,037,811, 822,645,052,41
 6
 RUN
 X^4 = 8.0378118226518
 X^3
 X^3
-12, 870, 931, 245, 150,988,
288
 RUN
 X^3 = -1.2870931245219
 X^2
 X^2
13,803,759,753,640,704,0
00
RUN
```

```
 X^2 = 1.3803759753619
 X^1
 X^1
 -8,752,948,036,761,600,0
 00
 RUN
 X^1 = -8.7529480367618
 X^0
 X^0
 2,432,902,008,176,640,00
 0
 RUN
 X^0 = 2.4329020081818
 toll = ?
 1-12 RUN
 toll = 1.-12
 ... running
 ... m = 15 n = 18
 T= 0
 Z= 0
 Y= 2
 X= 1
 RUN
 ... m = 20 n = 16
 T= 0
 Z= 0
 Y= 4.00000000287
 X= 2.99999999998
 RUN
 ... m = 24 n = 14
 T= 0
 Z= 0
 Y= 6.00000071885
 X= 4.99999993513
 RUN
 ... m = 25 n = 12
```

| $\mathrm{T}=$ | 0 |
| :--- | ---: |
| $\mathrm{Z}=$ | 0 |
| $\mathrm{Y}=$ | 8.00002269491 |
| $\mathrm{X}=$ | 6.99999510388 |
|  | RUN |

$\ldots m=26 \mathrm{n}=10$
$\mathrm{T}=\quad 0$
Z= 0
$\mathrm{Y}=\quad 10.0001891858$
$\mathrm{X}=\quad 8.99992418614$
RUN
$\ldots \mathrm{m}=26 \mathrm{n}=8$
$\mathrm{T}=\quad 0$
Z= 0
$\mathrm{Y}=\quad 12.0005305469$
$\mathrm{X}=\quad 10.9996398136$ RUN
$\ldots \mathrm{m}=24 \mathrm{n}=6$
$\mathrm{T}=$
0
Z=
0
$\mathrm{Y}=\quad 14.0005392168$
$X=\quad 12.999392852$ RUN
$\ldots \mathrm{m}=21 \mathrm{n}=4$
$\mathrm{T}=$
0
Z= 0
$\mathrm{Y}=\quad 16.0001899451$
$X=\quad 14.9996315405$
RUN
$\ldots \mathrm{m}=16 \mathrm{n}=2$
$\mathrm{T}=$
0

```
Z= 0
Y= 18.0000186006
X= 16.9999284161
 RUN
... continue
T= 0
Z=
 0
Y= 20.0000002222
X= 18.9999970186
 stop
Comparison of solutions with MATLAB®
>> \(\mathrm{p}=\operatorname{vpa}(\mathrm{poly}(1: 20), 50)\)) \(\% 50\) digits of precision !!!
p =
```

    -8752948036761600000
    2432902008176640000
    >> vpa(roots(p),50) %50 digits of precision !!!
ans =
20.000000222199534868713599273462258466712127004597
18.999997018587796499599382829761397076325793162443
18.000018600605906061623674706363960053777913260240
16.999928416017085118893055685779730825337982350020
16.000189945470409472562242509352720428219240209614
14.999631539779625744239784311608445427666843675867
14.000539217936149354403824840292397964289943561236
12.999392850542677085285165188054458878502693302973
12.000530548412933592244708916464305835587941782724
10.999639812328610607970362553159438217574647568529
10.000189186679827908616860814451413349963023133105
8.9999241856822158235050949809045751771845269373654
8.0000226951019706281389263917095850048514492411022
6.9999951038170559499797094372963554834034094545611
6.0000007188589671560339023143964654294808075650932
4.9999999351265723893873617834882112718161476762018
4.0000000028712551058351832250815870668565313083984
2.9999999999829963065286023953425383926195171558183
1.9999999999984005932064258391586578920548494514000
1.0000000000000097332321320038714977577746034770310

```

\section*{Comparison between DM42 and TI-59 \({ }^{\circledR}\)}

In this section I would like to compare the performance (speed and accuracy) between my first programmable calculator the TI-59 (1977) purchased when I was a young student in high school (1982) with the DM42 (2017) purchased in May 2020. Forty years exactly after the two calculators were released. The performances are obviously incomparable for several reasons, the main one is certainly the miniaturization of the transistors inside modern CPUs.
\begin{tabular}{|l|l|l|}
\hline & TI-59 \({ }^{\circledR}\) & DM42 \\
\hline CPU & TMC0501 & STM32L476 \\
\hline Data Bus & 4 bits & 32 bits \\
\hline\(f_{\text {clock }}\) (max \()\) & 230 kHz & 80 MHz \\
\hline Precision Digits & 13 & 34 \\
\hline Display Digits & 10 & 34 \\
\hline Registers Maximum & 100 & variable \\
\hline Program Steps Maximum & 960 & \\
\hline Magnetic Card Reader & YES & \\
\hline Module ROM & YES & \\
\hline
\end{tabular}

DM42 \& TI-59 \({ }^{\circledR}\)

TI-59 \({ }^{\circledR}\) Front-Side

TI-59 \({ }^{\circledR}\) Back-Side

TI-59 \({ }^{\circledR}\) Hardware

DM42 Hardware

Example2 with DM42 \& TI-59 \({ }^{\circledR}+\) Module EE11 \(^{3}\)
\(\mathrm{P}_{5}(x)=x^{5}-17.8 x^{4}+99.41 x^{3}-261.218 x^{2}+352.611 x-134.106=0\)

DM42

DM42 execution time \(\ll 1\) [s]
TI59 \({ }^{\circledR}\) execution time \(=150[\mathrm{~s}]\)

\footnotetext{
\({ }^{3}\) Example from TI-58/59 Module 11 (1978) Texas Instruments Incorporated.
}

\section*{Example4}

In numerical analysis, Wilkinson's polynomial is a specific polynomial \({ }^{4}\) which was used by James H. Wilkinson in 1963 to illustrate a difficulty when finding the root of a polynomial: the location of the roots can be very sensitive to perturbations in the coefficients of the polynomial.

The polynomial is
\[
P_{10}(x)=\prod_{i=1}^{10}(x-i)=a_{0} x^{10}+a_{1} x^{9}+a_{2} x^{8}+\cdots+a_{10}
\]
and toll \(=1 \cdot 10^{-12}\) for DM42 while toll \(=1 \cdot 10^{-9}\) for TI59 \({ }^{\circledR}\)
\begin{tabular}{|l|l|}
\hline Coefficient & Value \\
\hline\(a_{0}\) & 1 \\
\hline\(a_{1}\) & -55 \\
\hline\(a_{2}\) & 1320 \\
\hline\(a_{3}\) & -18150 \\
\hline\(a_{4}\) & 157773 \\
\hline\(a_{5}\) & -902055 \\
\hline\(a_{6}\) & 3416930 \\
\hline\(a_{7}\) & -8409500 \\
\hline\(a_{8}\) & 12753576 \\
\hline\(a_{9}\) & -10628640 \\
\hline\(a_{10}\) & 3628800 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{4}\) Due to TI59's reduced ability to represent integers, I had to limit \(\mathrm{n}=10\) instead of 20.
}

DM42

DM42 execution time \(=4[\mathrm{~s}] f_{\text {clock }}=80 \mathrm{MHz}\)
TI59 \({ }^{\circledR}\) execution time \(=8280[\mathrm{~s}]!!!\)

\section*{Comparison between DM42, HP50G \({ }^{\circledR}\) and HP48G \({ }^{\circledR}\)}

In this section I would like to compare the performance (speed and accuracy) between DM42 with HP48G \({ }^{\circledR}\) (1993) and HP50G \({ }^{\circledR}\) (2006).
\begin{tabular}{|c|c|c|c|}
\hline & HP48G \({ }^{\text {® }}\) & HP50G \({ }^{\text {® }}\) & DM42 \\
\hline CPU & Saturn Yorke & ARM9 & STM32L476 \\
\hline Data Bus & 4 bits & & 32 bits \\
\hline \(f_{\text {clock }}(\max)\) & 4 MHz & 75 MHz & 80 MHz \\
\hline Precision Digits & & 15 & 34 \\
\hline ROM & 512 kB & 2 MB & 8 MB \\
\hline RAM & 32 kB & 512 kB & 75 kB \\
\hline
\end{tabular}

DM42 \& HP50G \({ }^{\circledR}\) \& HP48G \({ }^{\circledR}\)

\section*{Example3}

In numerical analysis, Wilkinson's polynomial is a specific polynomial which was used by James H. Wilkinson in 1963 to illustrate a difficulty when finding the root of a polynomial: the location of the roots can be very sensitive to perturbations in the coefficients of the polynomial.

The polynomial is
\[
P_{20}(x)=\prod_{i=1}^{20}(x-i)=a_{0} x^{20}+a_{1} x^{19}+a_{2} x^{18}+\cdots+a_{20}
\]
and toll \(=1 \cdot 10^{-12}\)
\begin{tabular}{|l|l|}
\hline Coefficient & Value \\
\hline \(\mathrm{a}_{0}\) & 1 \\
\hline \(\mathrm{a}_{1}\) & -210 \\
\hline \(\mathrm{a}_{2}\) & 20615 \\
\hline \(\mathrm{a}_{3}\) & -1256850 \\
\hline \(\mathrm{a}_{4}\) & 53327946 \\
\hline \(\mathrm{a}_{5}\) & -1672280820 \\
\hline \(\mathrm{a}_{6}\) & 40171771630 \\
\hline \(\mathrm{a}_{7}\) & -756111184500 \\
\hline \(\mathrm{a}_{8}\) & 11310276995381 \\
\hline \(\mathrm{a}_{9}\) & -135585182899530 \\
\hline \(\mathrm{a}_{10}\) & 1307535010540395 \\
\hline \(\mathrm{a}_{11}\) & -10142299865511450 \\
\hline \(\mathrm{a}_{12}\) & 63030812099294896 \\
\hline \(\mathrm{a}_{13}\) & -311333643161390656 \\
\hline \(\mathrm{a}_{14}\) & 1206647803780373248 \\
\hline \(\mathrm{a}_{15}\) & -3599979517947607040 \\
\hline \(\mathrm{a}_{16}\) & 8037811822645052416 \\
\hline \(\mathrm{a}_{17}\) & -12870931245150988288 \\
\hline \(\mathrm{a}_{18}\) & 13803759753640704000 \\
\hline \(\mathrm{a}_{19}\) & -8752948036761600000 \\
\hline \(\mathrm{a}_{20}\) & 2432902008176640000 \\
\hline
\end{tabular}

\section*{DM42}

DM42 execution time \(=10[\mathrm{~s}] f_{\text {clock }}=80 \mathrm{MHz}\)
HP50G \({ }^{\circledR}\) execution time \(=14[\mathrm{~s}] \quad f_{\text {clock }}=75 \mathrm{MHz}\)
HP48G \({ }^{\circledR}\) execution time \(=\) not evaluable
\begin{tabular}{|l|l|}
\hline HP50G \({ }^{\circledR}\) & Roots of \(\mathbf{P}_{\mathbf{2 0}}(\mathbf{x})\) \\
\hline \(\mathrm{x}_{1}\) & 0.999999999325 \\
\hline \(\mathrm{x}_{2}\) & 2.000000080220 \\
\hline \(\mathrm{x}_{3}\) & 2.99999843200 \\
\hline \(\mathrm{x}_{4}\) & 3.99999054543 \\
\hline \(\mathrm{x}_{5}\) & 5.00048951553 \\
\hline \(\mathrm{x}_{6}\) & 5.99635310588 \\
\hline \(\mathrm{x}_{7}\) & 6.98799614792 \\
\hline \(\mathrm{x}_{8,9}\) & \(8.17180636115 \pm i \quad 0.43452021603\) \\
\hline \(\mathrm{x}_{10,11}\) & \(12.1018913985 \pm i 2.24809179333\) \\
\hline \(\mathrm{x}_{12,13}\) & \(14.6459622817 \pm i 2.44093568498\) \\
\hline \(\mathrm{x}_{14,15}\) & \(9.88718717922 \pm i 1.48403068110\) \\
\hline \(\mathrm{x}_{16,17}\) & \(17.1174681588 \pm i 1.89829970819\) \\
\hline \(\mathrm{x}_{18}\) & 20.0956132820 \\
\hline \(\mathrm{x}_{19,2}\) & \(19.0354640665 \pm i \quad 0.811243731857\) \\
\hline
\end{tabular}

\section*{Example4}

In numerical analysis, Wilkinson's polynomial is a specific polynomial which was used by James H. Wilkinson in 1963 to illustrate a difficulty when finding the root of a polynomial: the location of the roots can be very sensitive to perturbations in the coefficients of the polynomial.

The polynomial is
\[
P_{10}(x)=\prod_{i=1}^{10}(x-i)=a_{0} x^{10}+a_{1} x^{9}+a_{2} x^{8}+\cdots+a_{10}
\]
and toll \(=1 \cdot 10^{-12}\) for DM42
\begin{tabular}{|l|l|}
\hline Coefficient & Value \\
\hline\(a_{0}\) & 1 \\
\hline\(a_{1}\) & -55 \\
\hline\(a_{2}\) & 1320 \\
\hline\(a_{3}\) & -18150 \\
\hline\(a_{4}\) & 157773 \\
\hline\(a_{5}\) & -902055 \\
\hline\(a_{6}\) & 3416930 \\
\hline\(a_{7}\) & -8409500 \\
\hline\(a_{8}\) & 12753576 \\
\hline\(a_{9}\) & -10628640 \\
\hline\(a_{10}\) & 3628800 \\
\hline
\end{tabular}

DM42

Sat 15/08/2020 9.48 PM 3.10V ~
\(\ldots m=13 n=8\)
T: 0
Z: 0
:
\(\begin{array}{ll}\text { T: } & 0 \\ \text { Z } & 0 \\ \text { Y: } \\ \text { X: } & 1\end{array}\)

Sat 15/08/2020 9:48 PM 3.10V ec
\(\ldots m=16 n=6\)
T: 0
Z: 0
\(Y: 4\)
\(X: 3\)

Sat 15/08/2020 9:48 PM 3.10V ect
\(\ldots m=16 n=4\)
T: 0
Z: 0
I: 0
Y: 6
X:
Y

Sat 15/08/2020 9:48 PM 3.10V
\(\ldots m=14 \mathrm{n}=2\)
T: 0
Z: 0
Y: 8
X: 7

Sat 15/08/2020 9:49 PM 2.97V -
... stop
T: 0
Z: 0
Z: 0
Y: 10
x: 9

DM42 execution time \(=4[\mathrm{~s}] f_{\text {clock }}=80 \mathrm{MHz}\)
HP50G \({ }^{\circledR}\) execution time \(=4[\mathrm{~s}] \quad f_{\text {clock }}=75 \mathrm{MHz}\)
HP48G \({ }^{\circledR}\) execution time \(=\) not evaluable
\begin{tabular}{|l|l|}
\hline HP50G \\
\\
\(\circledR\) & Roots of \(\mathbf{P}_{\mathbf{1 0}}(\mathbf{x})\) \\
\hline \(\mathrm{x}_{1}\) & 0.999999999999 \\
\hline \(\mathrm{x}_{2}\) & 2.000000000010 \\
\hline \(\mathrm{x}_{3}\) & 3.000000000010 \\
\hline \(\mathrm{x}_{4}\) & 3.999999999480 \\
\hline \(\mathrm{x}_{5}\) & 5.000000003860 \\
\hline \(\mathrm{x}_{6}\) & 5.999999986310 \\
\hline \(\mathrm{x}_{7}\) & 7.000000026370 \\
\hline \(\mathrm{x}_{8}\) & 7.999999971800 \\
\hline \(\mathrm{x}_{9}\) & 9.000000015730 \\
\hline \(\mathrm{x}_{10}\) & 9.999999996430 \\
\hline
\end{tabular}

\section*{... initial problem}
\[
\lambda^{8}+20.4 \lambda^{7}+151.3 \lambda^{6}+490 \lambda^{5}+687 \lambda^{4}+719 \lambda^{3}+150 \lambda^{2}+109 \lambda+6.87=0
\]
the quadratic factors obtained by Professor Leonard Bairstow in 1920 were:
1. \(\left(\lambda^{2}+11.25 \lambda+35.1\right)\)
2. \(\left(\lambda^{2}-0.006 \lambda+0.171\right)\)
3. \((\lambda+7.79)(\lambda+0.067)\)
4. \(\left(\lambda^{2}+1.33 \lambda+2.19\right)\)
while the solutions obtained with the DM42 with a toll \(=1 \cdot 10^{-21}\)
1. \(\left(\lambda^{2}+11.2170142414 \lambda+34.9705347691\right)\)
2. \(\left(\lambda^{2}-0.00566048716464 \lambda+0.1707972788\right)\)
3. \((\lambda+7.8575856905)(\lambda+0.067381378159)\)
4. \(\left(\lambda^{2}+1.33550629852 \lambda+2.19246512844\right)\)

\section*{Curiosity1}

Very often Leonard Bairstow's algorithm is also called Lin-Bairstow, this is probably due to the fact that in 1943 a Chinese mathematician Lin Shih-Nge developed an algorithm similar to the one previously deduced by Bairstow. Many people over the years have tried to improve the algorithm, just to name a few in chronological order:
1. Bairstow, L., "Investigations Relating to the Stability of the Aeroplane", R and M 154 of Advisory Committee for Aeronautics (1914).
2. Lin, Shih-nge, "A Method for Finding Roots of Algebraic Equations", J. Math. and Phys. 22:60-77 (1943).
3. Friedman, B., "Note on Approximating Complex Zeros of a Polynomial", Comm. Pure Appl. Math ~:195-208 (1949).
4. Luke, Y, L., and Ufford, D., "On the Roots of Algebraic Equations", J. Math. and Phys. 30:94-101 (1951).

5 Kantorovich, L. V., "Functional Analysis and Applied Mathematics", N,B.S. Report 1509 (translation by C, D. Benster and edited by G. E. Forsythe).
6. Henrici, Peter, "Elements of Numerical Analysis", Wiley and Sons, New York (1964).
7. Forsythe, G. E., "Generation and the use of Orthogonal Polynomials for Data Fitting with a Digital Computer" J. Sot. Indust. Appl. Math. 5:74-88 (1957). -
8. Waltmann, W. Lo, and Lambert, R. J., "T-Algorithm for Tridiagonalization", J. Indust, Appl, Math. 13:1069-78 (1965).
9. G. H. Golub, T. N. Robertson, "A Generalized Bairstow Algorithm", Technical Report no. 54 January 13 (1967)

\section*{Curiosity2}

If anyone was curious about the programmable calculators I purchased here is the list: \(\mathrm{TI} 59^{\circledR}, \mathrm{TI} 95^{\circledR}, \mathrm{HP} 48 \mathrm{G}^{\circledR}, \mathrm{HP} 50 \mathrm{G}^{\circledR}\) and last DM42 all are still fully functional.

\section*{Acknowledgments}

I have always had the passion since I was a student of mathematics applied to science, in these 31 years of teaching I have tried to stimulate students to be curious, some of them have been, to mention only the latest Alessandro Moglia whom I wish to continue their university studies with satisfaction. Thanks also for my old student Dr. Eng. Samuele Becchia now my friend for reading the article and his suggestions.

\section*{References}
[1] William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery (1992), Numerical Recipes, Cambridge University Press
[2] Anthony Ralston, Philip Rabinowitz (1978) A First Curse In Numerical Analysis, McGraw-Hill
[3] Electrical Engineering (1979) TI Programmable 58/59 Module - 11, Texas Instruments Incorporated
[4] L. Bairstow (1920), Applied Aerodynamics, Longmans, Green and Co```

[^0]: ${ }^{1}$ For the solution obtained by Professor Leonard Bairstow (1920) compared with the DM42, see the final part of the article where some examples are presented.

[^1]: ${ }^{2}$ Example from TI-58/59 Module 11 (1978) Texas Instruments Incorporated.

